4,489 research outputs found

    Throughput and Delay Scaling in Supportive Two-Tier Networks

    Full text link
    Consider a wireless network that has two tiers with different priorities: a primary tier vs. a secondary tier, which is an emerging network scenario with the advancement of cognitive radio technologies. The primary tier consists of randomly distributed legacy nodes of density nn, which have an absolute priority to access the spectrum. The secondary tier consists of randomly distributed cognitive nodes of density m=nβm=n^\beta with β2\beta\geq 2, which can only access the spectrum opportunistically to limit the interference to the primary tier. Based on the assumption that the secondary tier is allowed to route the packets for the primary tier, we investigate the throughput and delay scaling laws of the two tiers in the following two scenarios: i) the primary and secondary nodes are all static; ii) the primary nodes are static while the secondary nodes are mobile. With the proposed protocols for the two tiers, we show that the primary tier can achieve a per-node throughput scaling of λp(n)=Θ(1/logn)\lambda_p(n)=\Theta(1/\log n) in the above two scenarios. In the associated delay analysis for the first scenario, we show that the primary tier can achieve a delay scaling of Dp(n)=Θ(nβlognλp(n))D_p(n)=\Theta(\sqrt{n^\beta\log n}\lambda_p(n)) with λp(n)=O(1/logn)\lambda_p(n)=O(1/\log n). In the second scenario, with two mobility models considered for the secondary nodes: an i.i.d. mobility model and a random walk model, we show that the primary tier can achieve delay scaling laws of Θ(1)\Theta(1) and Θ(1/S)\Theta(1/S), respectively, where SS is the random walk step size. The throughput and delay scaling laws for the secondary tier are also established, which are the same as those for a stand-alone network.Comment: 13 pages, double-column, 6 figures, accepted for publication in JSAC 201

    RANS Equations with Explicit Data-Driven Reynolds Stress Closure Can Be Ill-Conditioned

    Full text link
    Reynolds-averaged Navier--Stokes (RANS) simulations with turbulence closure models continue to play important roles in industrial flow simulations. However, the commonly used linear eddy viscosity models are intrinsically unable to handle flows with non-equilibrium turbulence. Reynolds stress models, on the other hand, are plagued by their lack of robustness. Recent studies in plane channel flows found that even substituting Reynolds stresses with errors below 0.5% from direct numerical simulation (DNS) databases into RANS equations leads to velocities with large errors (up to 35%). While such an observation may have only marginal relevance to traditional Reynolds stress models, it is disturbing for the recently emerging data-driven models that treat the Reynolds stress as an explicit source term in the RANS equations, as it suggests that the RANS equations with such models can be ill-conditioned. So far, a rigorous analysis of the condition of such models is still lacking. As such, in this work we propose a metric based on local condition number function for a priori evaluation of the conditioning of the RANS equations. We further show that the ill-conditioning cannot be explained by the global matrix condition number of the discretized RANS equations. Comprehensive numerical tests are performed on turbulent channel flows at various Reynolds numbers and additionally on two complex flows, i.e., flow over periodic hills and flow in a square duct. Results suggest that the proposed metric can adequately explain observations in previous studies, i.e., deteriorated model conditioning with increasing Reynolds number and better conditioning of the implicit treatment of Reynolds stress compared to the explicit treatment. This metric can play critical roles in the future development of data-driven turbulence models by enforcing the conditioning as a requirement on these models.Comment: 35 pages, 18 figure

    Quantum memory and non-demolition measurement of single phonon state with nitrogen-vacancy centers ensemble

    Full text link
    In diamond, the mechanical vibration induced strain can lead to interaction between the mechanical mode and the nitrogen-vecancy (NV) centers. In this work, we propose to utilize the strain induced coupling for the quantum non-demolition (QND) single phonon measurement and memory in diamond. The single phonon in a diamond mechanical resonator can be perfectly absorbed and emitted by the NV centers ensemble (NVE) with adiabatically tuning the microwave driving. An optical laser drives the NVE to the excited states, which have much larger coupling strength to the mechanical mode. By adiabatically eliminating the excited states under large detuning limit, the effective coupling between the mechanical mode and the NVE can be used for QND measurement of the single phonon state. Under realistic experimental conditions, we numerically simulate the scheme. It is found that the fidelity of the absorbing and emitting process can reach a much high value. The overlap between the input and the output phonon shapes can reach 98.57%98.57\%.Comment: 7 pages, 3 figure
    corecore