24,624 research outputs found

    Interatomic collisions in two-dimensional and quasi-two-dimensional confinements with spin-orbit coupling

    Full text link
    We investigate the low-energy scattering and bound states of two two-component fermionic atoms in pure two-dimensional (2D) and quasi-2D confinements with Rashba spin-orbit coupling (SOC). We find that the SOC qualitatively changes the behavior of the 2D scattering amplitude in the low-energy limit. For quasi-2D systems we obtain the analytic expression for the effective-2D scattering amplitude and the algebraic equations for the two-atom bound state energy. Based on these results, we further derive the effective 2D interaction potential between two ultracold atoms in the quasi-2D confinement with Rashba SOC. These results are crucial for the control of the 2D effective physics in quasi-2D geometry via the confinement intensity and the atomic three-dimensional scattering length.Comment: 13pages, 5 figure

    Antidote application: an educational system for treatment of common toxin overdose

    Full text link
    Poisonings account for almost 1% of emergency room visits each year. Time is a critical factor in dealing with a toxicologic emergency. Delay in dispensing the first antidote dose can lead to life-threatening sequelae. Current toxicological resources that support treatment decisions are broad in scope, time-consuming to read, or at times unavailable. Our review of current toxicological resources revealed a gap in their ability to provide expedient calculations and recommendations about appropriate course of treatment. To bridge the gap, we developed the Antidote Application (AA), a computational system that automatically provides patient-specific antidote treatment recommendations and individualized dose calculations. We implemented 27 algorithms that describe FDA (the US Food and Drug Administration) approved use and evidence-based practices found in primary literature for the treatment of common toxin exposure. The AA covers 29 antidotes recommended by Poison Control and toxicology experts, 19 poison classes and 31 poisons, which represent over 200 toxic entities. To the best of our knowledge, the AA is the first educational decision support system in toxicology that provides patient-specific treatment recommendations and drug dose calculations. The AA is publicly available at http://projects.met- hilab.org/antidote/

    Modified Bethe-Peierls boundary condition for ultracold atoms with Spin-Orbit coupling

    Full text link
    We show that the Bethe-Peierls (BP) boundary condition should be modified for ultracold atoms with spin-orbit (SO) coupling. Moreover, we derive a general form of the modified BP boundary condition, which is applicable to a system with arbitrary kind of SO coupling. In the modified BP condition, an anisotropic term appears and the inter-atomic scattering length is normally SO-coupling dependent. For the special system in the current experiments, however, it can be proved that the scattering length is SO-coupling independent, and takes the same value as in the case without SO coupling. Our result is helpful for the study of both few-body and many-body physics in SO-coupled ultracold gases.Comment: 8 pages, significant improvement is made in the current versio

    Hidden Conformal Symmetry of Extremal Black Holes

    Full text link
    We study the hidden conformal symmetry of the extremal black holes. We introduce a new set of conformal coordinates to write the SL(2,R)SL(2,R) generators. We find that the Laplacian of the scalar field in many extremal black holes could be written in terms of the SL(2,R)SL(2,R) quadratic Casimir. This suggests that there exist dual CFT descriptions of these black holes. From the conformal coordinates, the temperatures of the dual CFTs could be read directly. For the extremal black hole, the Hawking temperature is vanishing. Correspondingly, only the left (right) temperature of the dual CFT is non-vanishing and the excitations of the other sector are suppressed. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction.Comment: 16 pages; Published versio

    Quantum speed limit for relativistic spin-0 and spin-1 bosons on commutative and noncommutative planes

    Get PDF
    Quantum speed limits of relativistic charged spin-0 and spin-1 bosons in the background of a homogeneous magnetic field are studied on both commutative and oncommutative planes. We show that, on the commutative plane, the average speeds of wave packets along the radial direction during the interval in which a quantum state evolving from an initial state to the orthogonal final one can not exceed the speed of light, regardless of the intensities of the magnetic field. However, due to the noncommutativity, the average speeds of the wave packets on noncommutative plane will exceed the speed of light in vacuum provided the intensity of the magnetic field is strong enough. It is a clear signature of violating Lorentz invariance in quantum mechanics region.Comment: 8 pages, no figures. arXiv admin note: text overlap with arXiv:1702.0316

    Astrophysical Constraints on Large Extra Dimensions

    Get PDF
    In the Kaluza-Klein (KK) scenario with n large extra dimensions where gravity propagates in the 4+n dimensional bulk of spacetime while gauge and matter fields are confined to a four dimensional subspace, the light graviton KK modes can be produced in the Sun, red giants and supernovae. We study the energy-loss rates through photon-photon annihilation, electron-positron annihilation, gravi-Compton-Primakoff scattering, gravi-bremsstrahlung and nucleon-nucleon bremsstrahlung, and derive lower limits to the string scale M_S. The most stringent lower limit obtained from SN1987A leads to MS>30−130M_S> 30 - 130 TeV (2.1-9.2 TeV) for the case of two (three) large extra dimensions.Comment: 12 pages, 4 figures, 2 tables; minor corrections, references adde

    Magnetic Field Effect on the Phase Transition in AdS Soliton Spacetime

    Full text link
    We investigate the scalar perturbations in an AdS soliton background coupled to a Maxwell field via marginally stable modes. In the probe limit, we study the magnetic field effect on the holographic insulator/superconductor phase transition numerically and analytically. The condensate will be localized in a finite circular region for any finite constant magnetic field. Near the critical point, we find that there exists a simple relation among the critical chemical potential, magnetic field, the charge and mass of the scalar field. This relation indicates that the presence of the magnetic field causes the phase transition hard.Comment: 15 pages, 3 figures, 2 tables. contents improved and references adde

    Optimal cloud resource auto-scaling for web applications

    Full text link
    In the on-demand cloud environment, web application providers have the potential to scale virtual resources up or down to achieve cost-effective outcomes. True elasticity and cost-effectiveness in the pay-per-use cloud business model, however, have not yet been achieved. To address this challenge, we propose a novel cloud resource auto-scaling scheme at the virtual machine (VM) level for web application providers. The scheme automatically predicts the number of web requests and discovers an optimal cloud resource demand with cost-latency trade-off. Based on this demand, the scheme makes a resource scaling decision that is up or down or NOP (no operation) in each time-unit re-allocation. We have implemented the scheme on the Amazon cloud platform and evaluated it using three real-world web log datasets. Our experiment results demonstrate that the proposed scheme achieves resource auto-scaling with an optimal cost-latency trade-off, as well as low SLA violations. © 2013 IEEE

    Determining the local dark matter density with LAMOST data

    Full text link
    Measurement of the local dark matter density plays an important role in both Galactic dynamics and dark matter direct detection experiments. However, the estimated values from previous works are far from agreeing with each other. In this work, we provide a well-defined observed sample with 1427 G \& K type main-sequence stars from the LAMOST spectroscopic survey, taking into account selection effects, volume completeness, and the stellar populations. We apply a vertical Jeans equation method containing a single exponential stellar disk, a razor thin gas disk, and a constant dark matter density distribution to the sample, and obtain a total surface mass density of $\rm {78.7 ^{+3.9}_{-4.7}\ M_{\odot}\ pc^{-2}}upto1kpcandalocaldarkmatterdensityof up to 1 kpc and a local dark matter density of 0.0159^{+0.0047}_{-0.0057}\,\rm M_{\odot}\,\rm pc^{-3}$. We find that the sampling density (i.e. number of stars per unit volume) of the spectroscopic data contributes to about two-thirds of the uncertainty in the estimated values. We discuss the effect of the tilt term in the Jeans equation and find it has little impact on our measurement. Other issues, such as a non-equilibrium component due to perturbations and contamination by the thick disk population, are also discussed.Comment: 11 pages, 10 figure
    • …
    corecore