37 research outputs found

    Ferroelectricity driven by magnetism in quasi-one-dimensional Ba9Fe3Se15

    Full text link
    The spin-induced ferroelectricity in quasi-1D spin chain system is little known, which could be fundamentally different from those in three-dimensional (3D) system. Here, we report the ferroelectricity driven by a tilted screw spin order and its exotic dynamic in the spin-chain compound Ba9Fe3Se15. It is found that the spin-induced polarization has already occurred and exhibits magnetoelectric coupling behavior far above the long-range spin order (LRSO) at TN = 14 K. The polarized entities grow and their dynamic responses slow down gradually with decreasing temperature and permeate the whole lattice to form 3D ferroelectricity at TN. Our results reveal that the short-range spin orders (SRSOs) in the decoupled chains play a key role for the exotic dynamic in this dimension reduced system. Ba9Fe3Se15 is the only example so far which exhibits electric polarization above LRSO temperature because of the formation of SRSOs

    Theoretical, numerical, and experimental investigation on the compliance and natural frequency of sinusoidal flexure hinges

    No full text
    Abstract To design a flexure hinge with high precision and high natural frequency, the sinusoidal flexure hinge is proposed in this article. First, the formulae for the compliance and precision factors of the hinge were derived based on the Euler–Bernoulli beam theory and the Gauss–Legendre quadrature formula. The natural frequency was also investigated based on the transfer matrix method. Compared with the simulation results of ANSYS Workbench, the results show that the modeling error is less than 6.7%. Second, the influence of structural parameters on compliance, precision factor, compliance precision ratio, and natural frequency was analyzed. The results show that compliance and precision are often contradictory, and the minimum thickness significantly influences the hinge's performance. Compared with conic flexure hinges in terms of compliance, precision, compliance precision ratios, and natural frequency, the sinusoidal flexure hinges have a better comprehensive performance. Finally, a flexure hinge was manufactured, and compliance was measured. The experimental results show that the error between the experimental value and the modeling value is 7.8%. Both simulation and experimental results verify the effectiveness of the sinusoidal flexure hinge model

    Lanthanum-Containing Magnesium Alloy with Antitumor Function Based on Increased Reactive Oxygen Species

    No full text
    Developing antitumor implants is of great significance to repair tumor-induced bone defects and simultaneously prevent bone tumor recurrence. The tumor cells, compared to normal cells, have a high reactive oxygen species level. They are vulnerable to oxidative insults under increased intrinsic oxidative stress. The lanthanum (La) ion with high phospholipid binding ability can open the mitochondrial permeability transition pore, which blocks the electron transport chain in the mitochondria, and consequently increases reactive oxygen species level. In this study, La was alloyed to Mg-6Zn-0.5Zr (ZK60) through selective laser melting technology. The results indicated that the mitochondrial membrane potential dropped whilst the reactive oxygen species increased as the La content increased. ZK60-1.0La revealed a high cell inhibition rate of 61.9% for bone tumor cell and high cell viability of 91.9% for normal cells, indicating that the alloy could induce bone tumor cell death, as well as exhibit good biocompatibility for normal cell. In addition, its degradation rate 1.23 mm/year was lower than that of ZK60 alloy 2.13 mm/year, which was mainly attributed to the grain refinement

    Growth and Physical Properties of SrxCa1−xCrO3 Single Crystals

    No full text
    Perovskites SrxCa1−xCrO3 attract much attention due to the controversy on the anomalous electronic state. In this study, we synthesized a series of SrxCa1−xCrO3 (0 ≤ x ≤ 1) single crystals under high pressure and high temperature conditions with self-oxidization. The crystal structure was determined using X-ray diffraction (XRD). With the increase of x, the structure transformed from orthorhombic to tetragonal to cubic. Antiferromagnetism was observed except for SrCrO3, and the TN decreased with increased x. All samples demonstrated semiconductive behavior by electrical resistivity measurement

    Rare Earth Element Yttrium Modified Mg-Al-Zn Alloy: Microstructure, Degradation Properties and Hardness

    No full text
    The overly-fast degradation rates of magnesium-based alloys in the biological environment have limited their applications as biodegradable bone implants. In this study, rare earth element yttrium (Y) was introduced into AZ61 magnesium alloy (Mg-6Al-1Zn wt %) to control the degradation rate by laser rapid melting. The results showed that the degradation rate of AZ61 magnesium alloy was slowed down by adding Y. This was attributed to the reduction of Mg17Al12 phase and the formation of Al2Y phase that has a more active potential, which decreased galvanic corrosion resulting from its coupling with the anodic matrix phase. Meanwhile, the hardness increased as Y contents increased due to the uniform distribution of the Al2Y and Mg17Al12 phases. However, as the Y contents increased further, the formation of excessive Al2Y phase resulted in the increasing of degradation rate and the decreasing of hardness due to its agglomeration

    Evaluation of Compressive and Permeability Behaviors of Trabecular-Like Porous Structure with Mixed Porosity Based on Mechanical Topology

    No full text
    The mechanical properties and permeability properties of artificial bone implants have high-level requirements. A method for the design of trabecular-like porous structure (TLPS) with mixed porosity is proposed based on the study of the mechanical and permeability characteristics of natural bone. With this technique, the morphology and density of internal porous structures can be adjusted, depending on the implantation requirements, to meet the mechanical and permeability requirements of natural bone. The design parameters mainly include the seed points, topology optimization coefficient, load value, irregularity, and scaling factor. Characteristic parameters primarily include porosity and pore size distribution. Statistical methods are used to analyze the relationship between design parameters and characteristic parameters for precise TLPS design and thereby provide a theoretical basis and guidance. TLPS scaffolds were prepared by selective laser melting technology. First, TLPS under different design parameters were analyzed using the finite element method and permeability simulation. The results were then verified by quasistatic compression and cell experiments. The scaling factor and topology optimization coefficient were found to largely affect the mechanical and permeability properties of the TLPS. The corresponding compressive strength reached 270–580 MPa; the elastic modulus ranged between 6.43 and 9.716 GPa, and permeability was 0.6 × 10−9–21 × 10−9; these results were better than the mechanical properties and permeability of natural bone. Thus, TLPS can effectively improve the success rate of bone implantation, which provides an effective theory and application basis for bone implantation

    Biodegradation Resistance and Bioactivity of Hydroxyapatite Enhanced Mg-Zn Composites via Selective Laser Melting

    No full text
    Mg-Zn alloys have attracted great attention as implant biomaterials due to their biodegradability and biomechanical compatibility. However, their clinical application was limited due to the too rapid degradation. In the study, hydroxyapatite (HA) was incorporated into Mg-Zn alloy via selective laser melting. Results showed that the degradation rate slowed down due to the decrease of grain size and the formation of protective layer of bone-like apatite. Moreover, the grain size continually decreased with increasing HA content, which was attributed to the heterogeneous nucleation and increased number of nucleation particles in the process of solidification. At the same time, the amount of bone-like apatite increased because HA could provide favorable areas for apatite nucleation. Besides, HA also enhanced the hardness due to the fine grain strengthening and second phase strengthening. However, some pores occurred owing to the agglomerate of HA when its content was excessive, which decreased the biodegradation resistance. These results demonstrated that the Mg-Zn/HA composites were potential implant biomaterials

    Calcium Silicate Improved Bioactivity and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Scaffolds

    No full text
    The poor bioactivity and mechanical properties have restricted its biomedical application, although poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) had good biocompatibility and biodegradability. In this study, calcium silicate (CS) was incorporated into PHBV for improving its bioactivity and mechanical properties, and the porous PHBV/CS composite scaffolds were fabricated via selective laser sintering (SLS). Simulated body fluid (SBF) immersion tests indicated the composite scaffolds had good apatite-forming ability, which could be mainly attributed to the electrostatic attraction of negatively charged silanol groups derived from CS degradation to positively charged calcium ions in SBF. Moreover, the compressive properties of the composite scaffolds increased at first, and then decreased with increasing the CS content, which was ascribed to the fact that CS of a proper content could homogeneously disperse in PHBV matrix, while excessive CS would form continuous phase. The compressive strength and modulus of composite scaffolds with optimal CS content of 10 wt % were 3.55 MPa and 36.54 MPa, respectively, which were increased by 41.43% and 28.61%, respectively, as compared with PHBV scaffolds. Additionally, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated MG63 cells had a higher proliferation rate on PHBV/CS composite scaffolds than that on PHBV. Alkaline phosphatase (ALP) staining assay demonstrated the incorporation of CS significantly promoted osteogenic differentiation of MG63 cells on the scaffolds. These results suggest that the PHBV/CS composite scaffolds have the potential in serving as a substitute in bone tissue engineering

    Microstructure Evolution and Biodegradation Behavior of Laser Rapid Solidified Mg–Al–Zn Alloy

    No full text
    The too fast degradation of magnesium (Mg) alloys is a major impediment hindering their orthopedic application, despite their superior mechanical properties and favorable biocompatibility. In this study, the degradation resistance of AZ61 (Al 6 wt. %, Zn 1 wt. %, remaining Mg) was enhanced by rapid solidification via selective laser melting (SLM). The results indicated that an increase of the laser power was beneficial for enhancing degradation resistance and microhardness due to the increase of relative density and formation of uniformed equiaxed grains. However, too high a laser power led to the increase of mass loss and decrease of microhardness due to coarsened equiaxed grains and a reduced solid solution of Al in the Mg matrix. In addition, immersion tests showed that the apatite increased with the increase of immersion time, which indicated that SLMed AZ61 possessed good bioactivity
    corecore