32,166 research outputs found

    Convergence and Optimality of Adaptive Mixed Finite Element Methods

    Full text link
    The convergence and optimality of adaptive mixed finite element methods for the Poisson equation are established in this paper. The main difficulty for mixed finite element methods is the lack of minimization principle and thus the failure of orthogonality. A quasi-orthogonality property is proved using the fact that the error is orthogonal to the divergence free subspace, while the part of the error that is not divergence free can be bounded by the data oscillation using a discrete stability result. This discrete stability result is also used to get a localized discrete upper bound which is crucial for the proof of the optimality of the adaptive approximation

    On the Computation Power of Name Parameterization in Higher-order Processes

    Full text link
    Parameterization extends higher-order processes with the capability of abstraction (akin to that in lambda-calculus), and is known to be able to enhance the expressiveness. This paper focuses on the parameterization of names, i.e. a construct that maps a name to a process, in the higher-order setting. We provide two results concerning its computation capacity. First, name parameterization brings up a complete model, in the sense that it can express an elementary interactive model with built-in recursive functions. Second, we compare name parameterization with the well-known pi-calculus, and provide two encodings between them.Comment: In Proceedings ICE 2015, arXiv:1508.0459

    Star formation associated with a large-scale infrared bubble

    Full text link
    Using the data from the Galactic Ring Survey (GRS) and Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), we performed a study for a large-scale infrared bubble with a size of about 16 pc at a distance of 2.0 kpc. We present the 12CO J=1-0, 13CO J=1-0 and C18O J=1-0 observations of HII region G53.54-0.01 (Sh2-82) obtained at the the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed distribution of associated molecular material. The large-scale infrared bubble shows a half-shell morphology at 8 um. H II regions G53.54-0.01, G53.64+0.24, and G54.09-0.06 are situated on the bubble. Comparing the radio recombination line velocities and associated 13CO J=1-0 components of the three H II regions, we found that the 8 um emission associated with H II region G53.54-0.01 should belong to the foreground emission, and only overlap with the large-scale infrared bubble in the line of sight. Three extended green objects (EGOs, the candidate massive young stellar objects), as well as three H II regions and two small-scale bubbles are found located in the G54.09-0.06 complex, indicating an active massive star-forming region. C18O J=1-0 emission presents four cloud clumps on the northeastern border of H II region G53.54-0.01. Via comparing the spectral profiles of 12CO J=1-0, 13CO J=1-0, and C18O J=1-0 peak at each clump, we found the collected gas in the three clumps, except for the clump coincided with a massive YSO (IRAS 19282+1814). Using the evolutive model of H II region, we derived that the age of H II region G53.54-0.01 is 1.5*10^6 yr. The significant enhancement of several Class I and Class II YSOs around G53.54-0.01 indicates the presence of some recently formed stars, which may be triggered by this H II region through the collect and collapse (CC) process.Comment: 9 pages, 6 figures, accepted for publication in A&
    • …
    corecore