3,043 research outputs found

    A Modification and Analysis of Lagrangian Trajectory Modeling and Granular Dynamics of Lunar Dust Particles

    Get PDF
    A previously developed mathematical model is amended to more accurately incorporate the effects of lift and drag on single dust particles in order to predict their behavior in the wake of high velocity gas flow. The model utilizes output from a CFD or DSMC simulation of exhaust from a rocket nozzle hot gas jet. An extension of the Saffman equation for lift based on the research of McLaughlin (1991) and Mei (1992) is used, while an equation for the Magnus force modeled after the work of Oesterle (1994) and Tsuji et al (1985) is applied. A relationship for drag utilizing a particle shape factor (phi = 0.8) is taken from the work of Haider and Levenspiel (1989) for application to non-spherical particle dynamics. The drag equation is further adjusted to account for rarefaction and compressibility effects in rarefied and high Mach number flows according to the work of Davies (1945) and Loth (2007) respectively. Simulations using a more accurate model with the correction factor (Epsilon = 0.8 in a 20% particle concentration gas flow) given by Richardson and Zaki (1954) and Rowe (1961) show that particles have lower ejection angles than those that were previously calculated. This is more prevalent in smaller particles, which are shown through velocity and trajectory comparison to be more influenced by the flow of the surrounding gas. It is shown that particles are more affected by minor changes to drag forces than larger adjustments to lift forces, demanding a closer analysis of the shape and behavior of lunar dust particles and the composition of the surrounding gas flow

    Photogrammetry and ballistic analysis of a high-flying projectile in the STS-124 space shuttle launch

    Full text link
    A method combining photogrammetry with ballistic analysis is demonstrated to identify flying debris in a rocket launch environment. Debris traveling near the STS-124 Space Shuttle was captured on cameras viewing the launch pad within the first few seconds after launch. One particular piece of debris caught the attention of investigators studying the release of flame trench fire bricks because its high trajectory could indicate a flight risk to the Space Shuttle. Digitized images from two pad perimeter high-speed 16-mm film cameras were processed using photogrammetry software based on a multi-parameter optimization technique. Reference points in the image were found from 3D CAD models of the launch pad and from surveyed points on the pad. The three-dimensional reference points were matched to the equivalent two-dimensional camera projections by optimizing the camera model parameters using a gradient search optimization technique. Using this method of solving the triangulation problem, the xyz position of the object's path relative to the reference point coordinate system was found for every set of synchronized images. This trajectory was then compared to a predicted trajectory while performing regression analysis on the ballistic coefficient and other parameters. This identified, with a high degree of confidence, the object's material density and thus its probable origin within the launch pad environment. Future extensions of this methodology may make it possible to diagnose the underlying causes of debris-releasing events in near-real time, thus improving flight safety.Comment: 26 pages, 11 figures, 3 table

    Randomized, Double-Blind, Placebo-Controlled, Global Phase III Trial of Talimogene Laherparepvec Combined With Pembrolizumab for Advanced Melanoma

    Full text link
    Purpose: The combination of talimogene laherparepvec (T-VEC) and pembrolizumab previously demonstrated an acceptable safety profile and an encouraging complete response rate (CRR) in patients with advanced melanoma in a phase Ib study. We report the efficacy and safety from a phase III, randomized, double-blind, multicenter, international study of T-VEC plus pembrolizumab (T-VEC-pembrolizumab) versus placebo plus pembrolizumab (placebo-pembrolizumab) in patients with advanced melanoma. Methods: Patients with stage IIIB-IVM1c unresectable melanoma, naïve to antiprogrammed cell death protein-1, were randomly assigned 1:1 to T-VEC-pembrolizumab or placebo-pembrolizumab. T-VEC was administered at ≤ 4 × 106 plaque-forming unit (PFU) followed by ≤ 4 × 108 PFU 3 weeks later and once every 2 weeks until dose 5 and once every 3 weeks thereafter. Pembrolizumab was administered intravenously 200 mg once every 3 weeks. The dual primary end points were progression-free survival (PFS) per modified RECIST 1.1 by blinded independent central review and overall survival (OS). Secondary end points included objective response rate per mRECIST, CRR, and safety. Here, we report the primary analysis for PFS, the second preplanned interim analysis for OS, and the final analysis. Results: Overall, 692 patients were randomly assigned (346 T-VEC-pembrolizumab and 346 placebo-pembrolizumab). T-VEC-pembrolizumab did not significantly improve PFS (hazard ratio, 0.86; 95% CI, 0.71 to 1.04; P = .13) or OS (hazard ratio, 0.96; 95% CI, 0.76 to 1.22; P = .74) compared with placebo-pembrolizumab. The objective response rate was 48.6% for T-VEC-pembrolizumab (CRR 17.9%) and 41.3% for placebo-pembrolizumab (CRR 11.6%); the durable response rate was 42.2% and 34.1% for the arms, respectively. Grade ≥ 3 treatment-related adverse events occurred in 20.7% of patients in the T-VEC-pembrolizumab arm and in 19.5% of patients in the placebo-pembrolizumab arm. Conclusion: T-VEC-pembrolizumab did not significantly improve PFS or OS compared with placebo-pembrolizumab. Safety results of the T-VEC-pembrolizumab combination were consistent with the safety profiles of each agent alone

    Predicted Performance of an X-Ray Navigation System for Future Deep Space and Lunar Missions

    Get PDF
    In November 2017, the NASA Goddard Space Flight Center (GSFC) Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) experiment successfully demonstrated the feasibility of X-ray Pulsar Navigation (XNAV) as part of the Neutron Star Interior Composition Explorer (NICER) mission, which is an X-ray Astrophysics Mission of Opportunity currently operating onboard the International Space Station (ISS). XNAV provides a GPS-like absolute autonomous navigation and timing capability available anywhere in the Solar System and beyond. While the most significant benefits of XNAV are expected to come in support of very deep-space missions, the absolute autonomous navigation and timing capability also has utility for inner Solar System missions where increased autonomy or backup navigation and timing services are required, e.g., address loss of communication scenarios.The NASA commitment to develop a Gateway to support exploration of the Moon and eventually Mars, as well as current and future robotic missions such as James Webb Space Telescope (JWST), New Horizons, and much more, certainly will tax the existing ground based infrastructure in terms of availability. There- fore, an extended look at the feasibility and potential performance of XNAV for comparable missions is warranted. In this paper, we briefly review the XNAV concept and present case studies of its utility and performance for a Gateway orbit, Sun-Earth libration orbit, and a deep space transit trajectory

    Frequency Tracking and Parameter Estimation for Robust Quantum State-Estimation

    Full text link
    In this paper we consider the problem of tracking the state of a quantum system via a continuous measurement. If the system Hamiltonian is known precisely, this merely requires integrating the appropriate stochastic master equation. However, even a small error in the assumed Hamiltonian can render this approach useless. The natural answer to this problem is to include the parameters of the Hamiltonian as part of the estimation problem, and the full Bayesian solution to this task provides a state-estimate that is robust against uncertainties. However, this approach requires considerable computational overhead. Here we consider a single qubit in which the Hamiltonian contains a single unknown parameter. We show that classical frequency estimation techniques greatly reduce the computational overhead associated with Bayesian estimation and provide accurate estimates for the qubit frequencyComment: 6 figures, 13 page

    Ventral Striatum and the Evaluation of Memory Retrieval Strategies

    Get PDF
    Abstract ■ Adaptive memory retrieval requires mechanisms of cognitive control that facilitate the recovery of goal-relevant information. Frontoparietal systems are known to support control of memory retrieval. However, the mechanisms by which the brain acquires, evaluates, and adapts retrieval strategies remain unknown. Here, we provide evidence that ventral striatal activation tracks the success of a retrieval strategy and correlates with subsequent reliance on that strategy. Human participants were scanned with fMRI while performing a lexical decision task. A rule was provided that indicated the likely semantic category of a target word given the category of a preceding prime. Reliance on the rule improved decision-making, as estimated within a drift diffusion framework. Ventral striatal activation tracked the benefit that relying on the rule had on decision-making. Moreover, activation in ventral striatum correlated with a participantʼs subsequent reliance on the rule. Taken together, these results support a role for ventral striatum in learning and evaluating declarative retrieval strategies.

    Cholesterol 25-hydroxylase mediates neuroinflammation and neurodegeneration in a mouse model of tauopathy

    Get PDF
    Alzheimer\u27s disease (AD) is characterized by amyloid plaques and neurofibrillary tangles, in addition to neuroinflammation and changes in brain lipid metabolism. 25-Hydroxycholesterol (25-HC), a known modulator of both inflammation and lipid metabolism, is produced by cholesterol 25-hydroxylase encoded by Ch25h expressed as a disease-associated microglia signature gene. However, whether Ch25h influences tau-mediated neuroinflammation and neurodegeneration is unknown. Here, we show that in the absence of Ch25h and the resultant reduction in 25-HC, there is strikingly reduced age-dependent neurodegeneration and neuroinflammation in the hippocampus and entorhinal/piriform cortex of PS19 mice, which express the P301S mutant human tau transgene. Transcriptomic analyses of bulk hippocampal tissue and single nuclei revealed that Ch25h deficiency in PS19 mice strongly suppressed proinflammatory signaling in microglia. Our results suggest a key role for Ch25h/25-HC in potentiating proinflammatory signaling to promote tau-mediated neurodegeneration. Ch25h may represent a novel therapeutic target for primary tauopathies, AD, and other neuroinflammatory diseases

    Potable Water Reuse through Advanced Membrane Technology

    Full text link
    © 2018 American Chemical Society. Recycling water from municipal wastewater offers a reliable and sustainable solution to cities and regions facing shortage of water supply. Places including California and Singapore have developed advanced water reuse programs as an integral part of their water management strategy. Membrane technology, particularly reverse osmosis, has been playing a key role in producing high quality recycled water. This feature paper highlights the current status and future perspectives of advanced membrane processes to meet potable water reuse. Recent advances in membrane materials and process configurations are presented and opportunities and challenges are identified in the context of water reuse
    • …
    corecore