5,529 research outputs found
Rearrangement of {α-P2W15} to {PW6} moieties during the assembly of transition-metal-linked polyoxometalate clusters
We report the formation of two polyoxotungstates of the general formula [M6(PW6O26)(α-P2W15O56)2(H2O)2]23− (M = CoII or MnII), which contain {PW6} fragments generated from the [P2W15O56]12− precursor, which demonstrates for the first time the transformation of a Dawson lacunae into a Keggin lacunary building block. Solution analysis of the clusters has been conducted via electrospray ionisation mass spectrometry
Global 3D Simulations of Disc Accretion onto the classical T Tauri Star BP Tauri
The magnetic field of the classical T Tauri star BP Tau can be approximated
as a superposition of dipole and octupole moments with respective strengths of
the polar magnetic fields of 1.2 kG and 1.6 kG (Donati et al. 2008). We adopt
the measured properties of BP Tau and model the disc accretion onto the star.
We observed in simulations that the disc is disrupted by the dipole component
and matter flows towards the star in two funnel streams which form two
accretion spots below the dipole magnetic poles. The octupolar component
becomes dynamically important very close to the star and it redirects the
matter flow to higher latitudes. The spots are meridionally elongated and are
located at higher latitudes, compared with the pure dipole case, where
crescent-shaped, latitudinally elongated spots form at lower latitudes. The
position and shape of the spots are in good agreement with observations. The
disk-magnetosphere interaction leads to the inflation of the field lines and to
the formation of magnetic towers above and below the disk. The magnetic field
of BP Tau is close to the potential only near the star, inside the
magnetospheric surface, where magnetic stress dominates over the matter stress.
A series of simulation runs were performed for different accretion rates. They
show that an accretion rate is lower than obtained in many observations, unless
the disc is truncated close to the star. The torque acting on the star is about
an order of magnitude lower than that which is required for the rotational
equilibrium. We suggest that a star could lose most of its angular momentum at
earlier stages of its evolution.Comment: 11 pages, 13 figures, submitted to MNRA
Global 3D Simulations of Disc Accretion onto the classical T Tauri Star V2129 Oph
The magnetic field of the classical T Tauri star V2129 Oph can be modeled
approximately by superposing slightly tilted dipole and octupole moments, with
polar magnetic field strengths of 0.35kG and 1.2kG respectively (Donati et al.
2007). Here we construct a numerical model of V2129 Oph incorporating this
result and simulate accretion onto the star. Simulations show that the disk is
truncated by the dipole component and matter flows towards the star in two
funnel streams. Closer to the star, the flow is redirected by the octupolar
component, with some of the matter flowing towards the high-latitude poles, and
the rest into the octupolar belts. The shape and position of the spots differ
from those in a pure dipole case, where crescent-shaped spots are observed at
the intermediate latitudes. Simulations show that if the disk is truncated at
the distance of 6.2 R_* which is comparable with the co-rotation radius, 6.8
R_*, then the high-latitude polar spots dominate, but the accretion rate
obtained from the simulations is about an order of magnitude lower than the
observed one. The accretion rate matches the observed one if the disk is
disrupted much closer to the star, at 3.4 R_*. However, the octupolar belt
spots strongly dominate. Better match has been obtained in experiments with a
dipole field twice as strong. The torque on the star from the
disk-magnetosphere interaction is small, and the time-scale of spin evolution,
2 x10^7-10^9 years is longer than the 2x10^6 years age of V2129 Oph. The
external magnetic flux of the star is strongly influenced by the disk: the
field lines connecting the disk and the star inflate and form magnetic towers
above and below the disk. The potential (vacuum) approximation is still valid
inside the Alfv\'en (magnetospheric) surface where the magnetic stress
dominates over the matter stress.Comment: 15 pages, 15 figures, after major revision, added 3 figures, 2
tables. Accepted to MNRA
Artificial Intelligence (AI) Assistant Helpfulness
Since Apple first introduced Siri in 2011, artificial intelligence (AI) powered voice assistants (VA\u27s) have become well-established features of mobile devices (Guzman, 2019). Following Siri, additional prominently used voice assistants include Amazon\u27s Alexa, Google\u27s Google Assistant, and Microsoft\u27s Cortana. Recently, there has been a growth in voice-based technology, and many people are now communicating with voice assistants daily in the same way they would with other humans (Sundar et al., 2017). Additionally, though consumer research has shown that people generally prefer female voices over male ones (Griggs, 2011), the context in which the users experience these voices matters. For instance, female voiced computers created to perform a dominant role, such as giving commands or rating performance, were evaluated more negatively by users than male-voiced computers performing the same role (Nass et al., 2006). Thus, we aimed to investigate two relevant hypotheses tested in the present study: First, we hypothesized that listening to a female AI voice assistant would increase sexism ratings, specifically benevolent sexism, compared to listening to a male AI voice assistant. And secondly, we hypothesized that listening to a female AI voice assistant would increase traditional attitudes towards women compared to listening to a male AI voice assistant. We created an online instrument that allows participants to interact with two versions of a digital AI helper (one male, one female) while completing a quiz, and then rate how helpful and accurate the AI helper was. Data collection in the project is ongoing
A metamorphic inorganic framework that can be switched between eight single-crystalline states
The design of highly flexible framework materials requires organic linkers, whereas inorganic materials are more robust but inflexible. Here, by using linkable inorganic rings made up of tungsten oxide (P8W48O184) building blocks, we synthesized an inorganic single crystal material that can undergo at least eight different crystal-to-crystal transformations, with gigantic crystal volume contraction and expansion changes ranging from −2,170 to +1,720 Å3 with no reduction in crystallinity. Not only does this material undergo the largest single crystal-to-single crystal volume transformation thus far reported (to the best of our knowledge), the system also shows conformational flexibility while maintaining robustness over several cycles in the reversible uptake and release of guest molecules switching the crystal between different metamorphic states. This material combines the robustness of inorganic materials with the flexibility of organic frameworks, thereby challenging the notion that flexible materials with robustness are mutually exclusive
Analytic and numerical models of the 3D multipolar magnetospheres of pre-main sequence stars
Traditionally models of accretion of gas on to T Tauri stars have assumed a
dipole stellar magnetosphere, partly for simplicity, but also due to the lack
of information about their true magnetic field topologies. Before and since the
first magnetic maps of an accreting T Tauri star were published in 2007 a new
generation of magnetospheric accretion models have been developed that
incorporate multipole magnetic fields. Three-dimensional models of the
large-scale stellar magnetosphere with an observed degree of complexity have
been produced via numerical field extrapolation from observationally derived T
Tauri magnetic maps. Likewise, analytic and magnetohydrodynamic models with
multipolar stellar magnetic fields have been produced. In this conference
review article we compare and contrast the numerical field extrapolation and
analytic approaches, and argue that the large-scale magnetospheres of some (but
not all) accreting T Tauri stars can be well described by tilted dipole plus
tilted octupole field components. We further argue that the longitudinal field
curve, whether derived from accretion related emission lines, or from
photospheric absorption lines, provides poor constrains on the large-scale
magnetic field topology and that detailed modeling of the rotationally
modulated Stokes V signal is required to recover the true field complexity. We
conclude by examining the advantages, disadvantages and limitations of both the
field extrapolation and analytic approaches, and also those of
magnetohydrodynamic models.Comment: 19 pages, accepted refereed invited conference review for the
proceedings of the 7th Potsdam thinkshop: magnetic fields in stars and
exoplanets. Some figures reduced resolutio
The Anti-Sigma Factor MucA of Pseudomonas aeruginosa: Dramatic Differences of a mucA22 vs. a ΔmucA Mutant in Anaerobic Acidified Nitrite Sensitivity of Planktonic and Biofilm Bacteria in vitro and During Chronic Murine Lung Infection
Mucoid mucA22 Pseudomonas aeruginosa (PA) is an opportunistic lung pathogen of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) patients that is highly sensitive to acidified nitrite (A-NO2-). In this study, we first screened PA mutant strains for sensitivity or resistance to 20 mM A-NO2- under anaerobic conditions that represent the chronic stages of the aforementioned diseases. Mutants found to be sensitive to A-NO2- included PA0964 (pmpR, PQS biosynthesis), PA4455 (probable ABC transporter permease), katA (major catalase, KatA) and rhlR (quorum sensing regulator). In contrast, mutants lacking PA0450 (a putative phosphate transporter) and PA1505 (moaA2) were A-NO2- resistant. However, we were puzzled when we discovered that mucA22 mutant bacteria, a frequently isolated mucA allele in CF and to a lesser extent COPD, were more sensitive to A-NO2- than a truncated ΔmucA deletion (Δ157–194) mutant in planktonic and biofilm culture, as well as during a chronic murine lung infection. Subsequent transcriptional profiling of anaerobic, A-NO2--treated bacteria revealed restoration of near wild-type transcript levels of protective NO2- and nitric oxide (NO) reductase (nirS and norCB, respectively) in the ΔmucA mutant in contrast to extremely low levels in the A-NO2--sensitive mucA22 mutant. Proteins that were S-nitrosylated by NO derived from A-NO2- reduction in the sensitive mucA22 strain were those involved in anaerobic respiration (NirQ, NirS), pyruvate fermentation (UspK), global gene regulation (Vfr), the TCA cycle (succinate dehydrogenase, SdhB) and several double mutants were even more sensitive to A-NO2-. Bioinformatic-based data point to future studies designed to elucidate potential cellular binding partners for MucA and MucA22. Given that A-NO2- is a potentially viable treatment strategy to combat PA and other infections, this study offers novel developments as to how clinicians might better treat problematic PA infections in COPD and CF airway diseases
- …