255,484 research outputs found

    The Beylkin-Cramer Summation Rule and A New Fast Algorithm of Cosmic Statistics for Large Data Sets

    Full text link
    Based on the Beylkin-Cramer summation rule, we introduce a new fast algorithm that enable us to explore the high order statistics efficiently in large data sets. Central to this technique is to make decomposition both of fields and operators within the framework of multi-resolution analysis (MRA), and realize theirs discrete representations. Accordingly, a homogenous point process could be equivalently described by a operation of a Toeplitz matrix on a vector, which is accomplished by making use of fast Fourier transformation. The algorithm could be applied widely in the cosmic statistics to tackle large data sets. Especially, we demonstrate this novel technique using the spherical, cubic and cylinder counts in cells respectively. The numerical test shows that the algorithm produces an excellent agreement with the expected results. Moreover, the algorithm introduces naturally a sharp-filter, which is capable of suppressing shot noise in weak signals. In the numerical procedures, the algorithm is somewhat similar to particle-mesh (PM) methods in N-body simulations. As scaled with O(Nlog⁥N)O(N\log N), it is significantly faster than the current particle-based methods, and its computational cost does not relies on shape or size of sampling cells. In addition, based on this technique, we propose further a simple fast scheme to compute the second statistics for cosmic density fields and justify it using simulation samples. Hopefully, the technique developed here allows us to make a comprehensive study of non-Guassianity of the cosmic fields in high precision cosmology. A specific implementation of the algorithm is publicly available upon request to the author.Comment: 27 pages, 9 figures included. revised version, changes include (a) adding a new fast algorithm for 2nd statistics (b) more numerical tests including counts in asymmetric cells, the two-point correlation functions and 2nd variances (c) more discussions on technic

    A More General Quantum Searching Algorithm And the Precise Formula of the Amplitude and the Non-symmetric Effects of Different Rotating Angles

    Full text link
    This paper presented two general quantum search algorithms. We derived the iterated formulas and the simpler approximate formulas and the precise formula for the amplitude in the desired state. A mathematical proof of Grover's algorithm being optimal among the algorithms with arbitrary phase rotations was given in this paper. This first reported the non-symmetric effects of different rotating angles, and gave the first-order approximate phase condition when rotating angles are different.Comment: 13 pages, misusing tex formatting commands in title, shorted the titles, corrected typos, added the justifications to the section
    • 

    corecore