36 research outputs found

    Breeding Maize for Food and Nutritional Security

    Get PDF
    Maize occupies an important position in the world economy, and serves as an important source of food and feed. Together with rice and wheat, it provides at least 30 percent of the food calories to more than 4.5 billion people in 94 developing countries. Maize production is constrained by a wide range of biotic and abiotic stresses that keep afflicting maize production and productivity causing serious yield losses which bring yield levels below the potential levels. New innovations and trends in the areas of genomics, bioinformatics, and phenomics are enabling breeders with innovative tools, resources and technologies to breed superior resilient cultivars having the ability to resist the vagaries of climate and insect pest attacks. Maize has high nutritional value but is deficient in two amino acids viz. Lysine and Tryptophan. The various micronutrients present in maize are not sufficient to meet the nutritive demands of consumers, however the development of maize hybrids and composites with modifying nutritive value have proven to be good to meet the demands of consumers. Quality protein maize (QPM) developed by breeders have higher concentrations of lysine and tryptophan as compared to normal maize. Genetic level improvement has resulted in significant genetic gain, leading to increase in maize yield mainly on farmer’s fields. Molecular tools when collaborated with conventional and traditional methodologies help in accelerating these improvement programs and are expected to enhance genetic gains and impact on marginal farmer’s field. Genomic tools enable genetic dissections of complex QTL traits and promote an understanding of the physiological basis of key agronomic and stress adaptive and resistance traits. Marker-aided selection and genome-wide selection schemes are being implemented to accelerate genetic gain relating to yield, resilience, and nutritional quality. Efforts are being done worldwide by plant breeders to develop hybrids and composites of maize with high nutritive value to feed the people in future

    Anterior Open Bite Malocclusion: From Clinical Treatment Strategies towards the Dissection of the Genetic Bases of the Disease Using Human and Collaborative Cross Mice Cohorts

    Get PDF
    Anterior open bite malocclusion is a complex dental condition characterized by a lack of contact or overlap between the upper and lower front teeth. It can lead to difficulties with speech, chewing, and biting. Its etiology is multifactorial, involving a combination of genetic, environmental, and developmental factors. Genetic studies have identified specific genes and signaling pathways involved in jaw growth, tooth eruption, and dental occlusion that may contribute to open bite development. Understanding the genetic and epigenetic factors contributing to skeletal open bite is crucial for developing effective prevention and treatment strategies. A thorough manual search was undertaken along with searches on PubMed, Scopus, Science Direct, and Web of Science for relevant studies published before June 2022. RCTs (clinical trials) and subsequent observational studies comprised the included studies. Orthodontic treatment is the primary approach for managing open bites, often involving braces, clear aligners, or other orthodontic appliances. In addition to orthodontic interventions, adjuvant therapies such as speech therapy and/or physiotherapy may be necessary. In some cases, surgical interventions may be necessary to correct underlying skeletal issues. Advancements in technology, such as 3D printing and computer-assisted design and manufacturing, have improved treatment precision and efficiency. Genetic research using animal models, such as the Collaborative Cross mouse population, offers insights into the genetic components of open bite and potential therapeutic targets. Identifying the underlying genetic factors and understanding their mechanisms can lead to the development of more precise treatments and preventive strategies for open bite. Here, we propose to perform human research using mouse models to generate debatable results. We anticipate that a genome-wide association study (GWAS) search for significant genes and their modifiers, an epigenetics-wide association study (EWAS), RNA-seq analysis, the integration of GWAS and expression-quantitative trait loci (eQTL), and micro-, small-, and long noncoding RNA analysis in tissues associated with open bite in humans and mice will uncover novel genes and genetic factors influencing this phenotype

    Towards system genetics analysis of head and neck squamous cell carcinoma using the mouse model, cellular platform, and clinical human data

    No full text
    Abstract Head and neck squamous cell cancer (HNSCC) is a leading global malignancy. Every year, More than 830 000 people are diagnosed with HNSCC globally, with more than 430 000 fatalities. HNSCC is a deadly diverse malignancy with many tumor locations and biological characteristics. It originates from the squamous epithelium of the oral cavity, oropharynx, nasopharynx, larynx, and hypopharynx. The most frequently impacted regions are the tongue and larynx. Previous investigations have demonstrated the critical role of host genetic susceptibility in the progression of HNSCC. Despite the advances in our knowledge, the improved survival rate of HNSCC patients over the last 40 years has been limited. Failure to identify the molecular origins of development of HNSCC and the genetic basis of the disease and its biological heterogeneity impedes the development of new therapeutic methods. These results indicate a need to identify more genetic factors underlying this complex disease, which can be better used in early detection and prevention strategies. The lack of reliable animal models to investigate the underlying molecular processes is one of the most significant barriers to understanding HNSCC tumors. In this report, we explore and discuss potential research prospects utilizing the Collaborative Cross mouse model and crossing it to mice carrying single or double knockout genes (e.g. Smad4 and P53 genes) to identify genetic factors affecting the development of this complex disease using genome‐wide association studies, epigenetics, microRNA, long noncoding RNA, lncRNA, histone modifications, methylation, phosphorylation, and proteomics

    Extramedullary hematopoiesis presenting as a solitary renal mass and mimicking a malignant tumor: A rare case report

    No full text
    Extramedullary hematopoiesis (EMH) is the development of hematopoietic tissue outside the bone marrow and it most often occurs in the liver and spleen. Renal EMH is quite rare, and there are very few case reports concerning the kidney. We describe a case diagnosed with congenital dyserythropoetic anemia presenting with a solitary renal mass with splenomegaly. CECT showed a heterogeneously enhancing mass lesion suggestive of renal neoplasm. Microscopic examination revealed features of extramedullary hematopoiesis. We intend to present this case because of the rarity of EMH in kidney and to emphasize that its possibility should be kept in mind in any case of solitary renal mass, especially in those patients suffering from chronic hematological disorders

    Unraveling the Host Genetic Background Effect on Internal Organ Weight Influenced by Obesity and Diabetes Using Collaborative Cross Mice

    No full text
    Type 2 diabetes mellitus (T2DM) is a severe chronic epidemic that results from the body’s improper usage of the hormone insulin. Globally, 700 million people are expected to have received a diabetes diagnosis by 2045, according to the International Diabetes Federation (IDF). Cancer and macro- and microvascular illnesses are only a few immediate and long-term issues it could lead to. T2DM accelerates the effect of organ weights by triggering a hyperinflammatory response in the body’s organs, inhibiting tissue repair and resolving inflammation. Understanding how genetic variation translates into different clinical presentations may highlight the mechanisms through which dietary elements may initiate or accelerate inflammatory disease processes and suggest potential disease-prevention techniques. To address the host genetic background effect on the organ weight by utilizing the newly developed mouse model, the Collaborative Cross mice (CC). The study was conducted on 207 genetically different CC mice from 8 CC lines of both sexes. The experiment started with 8-week-old mice for 12 weeks. During this period, one group maintained a standard chow diet (CHD), while the other group maintained a high-fat diet (HFD). In addition, body weight was recorded bi-weekly, and at the end of the study, a glucose tolerance test, as well as tissue collection (liver, spleen, heart), were conducted. Our study observed a strong effect of HFD on blood glucose clearance among different CC lines. The HFD decreased the blood glucose clearance displayed by the significant Area Under Curve (AUC) values in both populations. In addition, variation in body weight changes among the different CC lines in response to HFD. The female liver weight significantly increased compared to males in the overall population when exposed to HFD. Moreover, males showed higher heritability values than females on the same diet. Regardless of the dietary challenge, the liver weight in the overall male population correlated positively with the final body weight. The liver weight results revealed that three different CC lines perform well under classification models. The regression results also varied among organs. Accordingly, the differences among these lines correspond to the genetic variance, and we suspect that some genetic factors invoke different body responses to HFD. Further investigations, such as quantitative trait loci (QTL) analysis and genomic studies, could find these genetic elements. These findings would prove critical factors for developing personalized medicine, as they could indicate future body responses to numerous situations early, thus preventing the development of complex diseases

    Dissecting the Complexity of Skeletal-Malocclusion-Associated Phenotypes: Mouse for the Rescue

    No full text
    Skeletal deformities and malocclusions being heterogeneous traits, affect populations worldwide, resulting in compromised esthetics and function and reduced quality of life. Skeletal Class III prevalence is the least common of all angle malocclusion classes, with a frequency of 7.2%, while Class II prevalence is approximately 27% on average, varying in different countries and between ethnic groups. Orthodontic malocclusions and skeletal deformities have multiple etiologies, often affected and underlined by environmental, genetic and social aspects. Here, we have conducted a comprehensive search throughout the published data until the time of writing this review for already reported quantitative trait loci (QTL) and genes associated with the development of skeletal deformation-associated phenotypes in different mouse models. Our search has found 72 significant QTL associated with the size of the mandible, the character, shape, centroid size and facial shape in mouse models. We propose that using the collaborative cross (CC), a highly diverse mouse reference genetic population, may offer a novel venue for identifying genetic factors as a cause for skeletal deformations, which may help to better understand Class III malocclusion-associated phenotype development in mice, which can be subsequently translated to humans. We suggest that by performing a genome-wide association study (GWAS), an epigenetics-wide association study (EWAS), RNAseq analysis, integrating GWAS and expression quantitative trait loci (eQTL), micro and small RNA, and long noncoding RNA analysis in tissues associated with skeletal deformation and Class III malocclusion characterization/phenotypes, including mandibular basic bone, gum, and jaw, in the CC mouse population, we expect to better identify genetic factors and better understand the development of this disease

    High‐fat diet and oral infection induced type 2 diabetes and obesity development under different genetic backgrounds

    No full text
    Abstract Background Type 2 diabetes (T2D) is an adult‐onset and obese form of diabetes caused by an interplay between genetic, epigenetic, and environmental components. Here, we have assessed a cohort of 11 genetically different collaborative cross (CC) mouse lines comprised of both sexes for T2D and obesity developments in response to oral infection and high‐fat diet (HFD) challenges. Methods Mice were fed with either the HFD or the standard chow diet (control group) for 12 weeks starting at the age of 8 weeks. At week 5 of the experiment, half of the mice of each diet group were infected with Porphyromonas gingivalis and Fusobacterium nucleatum bacteria strains. Throughout the 12‐week experimental period, body weight (BW) was recorded biweekly, and intraperitoneal glucose tolerance tests were performed at weeks 6 and 12 of the experiment to evaluate the glucose tolerance status of mice. Results Statistical analysis has shown the significance of phenotypic variations between the CC lines, which have different genetic backgrounds and sex effects in different experimental groups. The heritability of the studied phenotypes was estimated and ranged between 0.45 and 0.85. We applied machine learning methods to make an early call for T2D and its prognosis. The results showed that classification with random forest could reach the highest accuracy classification (ACC = 0.91) when all the attributes were used. Conclusion Using sex, diet, infection status, initial BW, and area under the curve (AUC) at week 6, we could classify the final phenotypes/outcomes at the end stage of the experiment (at 12 weeks)
    corecore