4,897 research outputs found

    Can One Measure the Weak Phase of a Penguin Diagram?

    Get PDF
    The b -> d penguin amplitude receives contributions from internal u, c and t-quarks. We show that it is impossible to measure the weak phase of any of these penguin contributions without theoretical input. However, it is possible to obtain the weak phase if one makes a single assumption involving the hadronic parameters. With such an assumption, one can test for the presence of new physics in the b -> d flavour-changing neutral current by comparing the weak phase of B_d^0-{\bar B}_d^0 mixing with that of the t-quark contribution to the b -> d penguin.Comment: 20 pages, no figure

    Exploring CP Violation with B_d -> D K_s Decays

    Full text link
    We (re)examine CP violation in the decays B_d -> D K_s, where D represents D^0, D(bar), or one of their excited states. The quantity sin⁥2(2ÎČ+Îł)\sin^2(2\beta + \gamma) can be extracted from the time-dependent rates for Bd(t)−>Dˉ∗∗0KsB_d(t) -> {\bar D}^{**0} K_s and Bd(t)−>D∗∗0KsB_d(t) -> D^{**0} K_s, where the D∗∗0D^{**0} decays to D(∗)+π−D^{(*)+}\pi^-. If one considers a non-CP-eigenstate hadronic final state to which both D(bar) and D^0 can decay (e.g. K+π−K^+\pi^-), then one can obtain two of the angles of the unitarity triangle from measurements of the time-dependent rates for Bd(t)−>(K+π−)DKsB_d(t) -> (K^+\pi^-)_{D K_s} and Bd(t)−>(K−π+)DKsB_d(t) -> (K^-\pi^+)_{D K_s}. There are no penguin contributions to these decays, so all measurements are theoretically clean.Comment: 15 pages, LaTeX, no figure

    Extracting Weak Phase Information from B -> V_1 V_2 Decays

    Get PDF
    We describe a new method for extracting weak, CP-violating phase information, with no hadronic uncertainties, from an angular analysis of B -> V_1 V_2 decays, where V_1 and V_2 are vector mesons. The quantity sin⁥2(2ÎČ+Îł)\sin^2 (2\beta + \gamma) can be cleanly obtained from the study of decays such as B_d^0(t) -> D^{*\pm} \rho^\mp, D^{*\pm} a_1^{\mp}, D^{*0} K^{*0}, etc. Similarly, one can use B_s^0(t) -> D_s^{*\pm} K^{*\mp} to extract sin⁥2Îł\sin^2 \gamma. There are no penguin contributions to these decays. It is possible that sin⁥2(2ÎČ+Îł)\sin^2 (2\beta + \gamma) will be the second function of CP phases, after sin⁥2ÎČ\sin 2\beta, to be measured at B-factories.Comment: 4 pages, RevTeX, no figure

    B-Decay CP Asymmetries, Discrete Ambiguities and New Physics

    Get PDF
    The first measurements of CP violation in the BB system will likely probe sin⁥2α\sin 2\alpha, sin⁥2ÎČ\sin 2\beta and cos⁥2Îł\cos 2\gamma. Assuming that the CP angles α\alpha, ÎČ\beta and Îł\gamma are the interior angles of the unitarity triangle, these measurements determine the angle set (α,ÎČ,Îł)(\alpha,\beta,\gamma) except for a twofold discrete ambiguity. If one allows for the possibility of new physics, the presence of this discrete ambiguity can make its discovery difficult: if only one of the two candidate solutions is consistent with constraints from other measurements in the BB and KK systems, one is not sure whether new physics is present or not. We review the methods used to resolve the discrete ambiguity and show that, even in the presence of new physics, they can usually be used to uncover this new physics. There are some exceptions, which we describe in detail. We systematically scan the parameter space and present examples of values of (α,ÎČ,Îł)(\alpha,\beta,\gamma) and the new-physics parameters which correspond to all possibilities. Finally, we show that if one relaxes the assumption that the bag parameters \BBd and \BK are positive, one can no longer definitively establish the presence of new physics.Comment: 29 pages, LaTeX, 1 figures, presentation substantially reworked, physics conclusions unchanged. This version will be published in Phys. Rev.

    The two-fluid model with superfluid entropy

    Full text link
    The two-fluid model of liquid helium is generalized to the case that the superfluid fraction has a small entropy content. We present theoretical arguments in favour of such a small superfluid entropy. In the generalized two-fluid model various sound modes of He  \;II are investigated. In a superleak carrying a persistent current the superfluid entropy leads to a new sound mode which we call sixth sound. The relation between the sixth sound and the superfluid entropy is discussed in detail.Comment: 22 pages, latex, published in Nuovo Cimento 16 D (1994) 37

    Determining the Quark Mixing Matrix From CP-Violating Asymmetries

    Full text link
    If the Standard Model explanation of CP violation is correct, then measurements of CP-violating asymmetries in BB meson decays can in principle determine the entire quark mixing matrix.Comment: 8 pages (plain TeX), 1 figure (postscript file appended), DAPNIA/SPP 94-06, NSF-PT-94-2, UdeM-LPN-TH-94-18

    Single Leptoquark Production at e+e−e^+e^- and γγ\gamma\gamma Colliders

    Full text link
    We consider single production of leptoquarks (LQ's) at e+e−e^+e^- and γγ\gamma\gamma colliders, for two values of the centre-of-mass energy, s=500\sqrt{s}=500 GeV and 1 TeV. We find that LQ's which couple within the first generation are observable for LQ masses almost up to the kinematic limit, both at e+e−e^+e^- and γγ\gamma\gamma colliders, for the LQ coupling strength equal to αem\alpha_{em}. The cross sections for single production of 2nd2^{nd}- and 3rd3^{rd}-generation LQ's at e+e−e^+e^- colliders are too small to be observable. In γγ\gamma\gamma collisions, on the other hand, 2nd2^{nd}-generation LQ's with masses much larger than s/2\sqrt{s}/2 can be detected. However, 3rd3^{rd}-generation LQ's can be seen at γγ\gamma\gamma colliders only for masses at most ∌s/2\sim\sqrt{s}/2, making their observation more probable via the pair production mechanism.Comment: plain TeX, 14 pages, 6 figures (not included but available on request), some minor changes to the text, one reference added, figures and conclusions unchanged, UdeM-LPN-TH-93-152, McGill-93/2

    Macroscopic Aharonov--Bohm Effect in Type-I Superconductors

    Full text link
    In type-I superconducting cylinders bulk superconductivity is destroyed above the first critical current. Below the second critical current the `type-I mixed state' displays fluctuation superconductivity which contributes to the total current. A magnetic flux on the axis of the cylinder can change the second critical current by as much as 50 percent so that half a flux quantum can switch the cylinder from normal conduction to superconductivity: the Aharonov--Bohm effect manifests itself in macroscopically large resistance changes of the cylinder.Comment: five pages, one figur

    Magnetic Properties of a Bose-Einstein Condensate

    Full text link
    Three hyperfine states of Bose-condensed sodium atoms, recently optically trapped, can be described as a spin-1 Bose gas. We study the behaviour of this system in a magnetic field, and construct the phase diagram, where the temperature of the Bose condensation TBECT_{BEC} increases with magnetic field. In particular the system is ferromagnetic below TBECT_{BEC} and the magnetization is proportional to the condensate fraction in a vanishing magnetic field. Second derivatives of the magnetisation with regard to temperature or magnetic field are discontinuous along the phase boundary.Comment: 5 pages, 5 figures included, to appear in Phys. Rev.
    • 

    corecore