6,538 research outputs found

    Probing New Physics via an Angular Analysis of B --> V1 V2 decays

    Full text link
    We show that an angular analysis of B --> V1 V2 decays yields numerous tests for new physics in the decay amplitudes. Unlike direct CP asymmetries, many of these new-physics observables are nonzero even if the strong phase differences vanish. For certain observables, neither time-dependent measurements nor tagging is necessary. Should a signal for new physics be found, one can place a lower limit on the size of the new-physics parameters, as well as on their effect on the measurement of the phase of B0--Bbar0 mixing.Comment: 9 pages, plain latex, no figures. Title modified slightly. Paragraph added about viability of method. Conclusions unchanged. To be published in Europhysics Letter

    Exploring CP Violation with B_d -> D K_s Decays

    Full text link
    We (re)examine CP violation in the decays B_d -> D K_s, where D represents D^0, D(bar), or one of their excited states. The quantity sin2(2β+γ)\sin^2(2\beta + \gamma) can be extracted from the time-dependent rates for Bd(t)>Dˉ0KsB_d(t) -> {\bar D}^{**0} K_s and Bd(t)>D0KsB_d(t) -> D^{**0} K_s, where the D0D^{**0} decays to D()+πD^{(*)+}\pi^-. If one considers a non-CP-eigenstate hadronic final state to which both D(bar) and D^0 can decay (e.g. K+πK^+\pi^-), then one can obtain two of the angles of the unitarity triangle from measurements of the time-dependent rates for Bd(t)>(K+π)DKsB_d(t) -> (K^+\pi^-)_{D K_s} and Bd(t)>(Kπ+)DKsB_d(t) -> (K^-\pi^+)_{D K_s}. There are no penguin contributions to these decays, so all measurements are theoretically clean.Comment: 15 pages, LaTeX, no figure

    The two-fluid model with superfluid entropy

    Full text link
    The two-fluid model of liquid helium is generalized to the case that the superfluid fraction has a small entropy content. We present theoretical arguments in favour of such a small superfluid entropy. In the generalized two-fluid model various sound modes of He  \;II are investigated. In a superleak carrying a persistent current the superfluid entropy leads to a new sound mode which we call sixth sound. The relation between the sixth sound and the superfluid entropy is discussed in detail.Comment: 22 pages, latex, published in Nuovo Cimento 16 D (1994) 37

    Off-Diagonal Long-Range Order in Bose Liquids: Irrotational Flow and Quantization of Circulation

    Full text link
    On the basis of gauge invariance, it is proven in an elementary and straightforward manner, but without invoking any {\it ad hoc} assumption, that the existence of off-diagonal long-range order in one-particle reduced density matrix in Bose liquids implies both the irrotational flow in a simply connected region and the quantization of circulation in a multiply connected region, the two fundamental properties of a Bose superfluid. The origin for both is the phase coherence of condensate wave-functions. Some relevant issues are also addressed.Comment: Revtex, 4 pages, no figure

    Weak Coupling Phase from Decays of Charged B Mesons to πK\pi K and ππ\pi\pi

    Full text link
    The theory of CPCP violation based on phases in weak couplings in the Cabibbo-Kobayashi-Maskawa (CKM) matrix requires the phase γArg Vub\gamma \equiv {\rm Arg~} V^*_{ub} (in a standard convention) to be nonzero. A measurement of γ\gamma is proposed based on charged BB meson decay rates to π+K0\pi^+ K^0, π0K+\pi^0 K^+, π+π0\pi^+ \pi^0, and the charge-conjugate states. The corresponding branching ratios are expected to be of the order of 10510^{-5}. (submitted to Physical Review Letters)Comment: LaTeX, 8 pages, 2 figures (not included, available upon request), TECHNION-PH-94-7, EFI-94-14, UdeM-LPN-TH-94-19

    Towards Dynamic Control of Wettability by Using Functionalized Altitudinal Molecular Motors on Solid Surfaces

    Get PDF
    We report the synthesis of altitudinal molecular motors that contain functional groups in their rotor part. In an approach to achieve dynamic control over the properties of solid surfaces, a hydrophobic perfluorobutyl chain and a relatively hydrophilic cyano group were introduced to the rotor part of the motors. Molecular motors were attached to quartz surfa-ces by using interfacial 1,3-dipolar cycloadditions. To test the effect of the functional groups on the rotary motion, photochemical and thermal isomerization studies of the motors were per-formed both in solution and when attached to the surface. We found that the substituents have no significant effect on the thermal and photochemical processes, and the functionalized motors preserved their rotary function both in solution and on a quartz surface. Preliminary results on the influence of the functional groups on surface wettability are also described

    Statistical mechanics of an ideal Bose gas in a confined geometry

    Full text link
    We study the behaviour of an ideal non-relativistic Bose gas in a three-dimensional space where one of the dimensions is compactified to form a circle. In this case there is no phase transition like that for the case of an infinite volume, nevertheless Bose-Einstein condensation signified by a sudden buildup of particles in the ground state can occur. We use the grand canonical ensemble to study this problem. In particular, the specific heat is evaluated numerically, as well as analytically in certain limits. We show analytically how the familiar result for the specific heat is recovered as we let the size of the circle become large so that the infinite volume limit is approached. We also examine in detail the behaviour of the chemical potential and establish the precise manner in which it approaches zero as the volume becomes large.Comment: 13 pages, 2 eps figures, revtex

    The cooling rate of neutron stars after thermonuclear shell flashes

    Full text link
    Thermonuclear shell flashes on neutron stars are detected as bright X-ray bursts. Traditionally, their decay is modeled with an exponential function. However, this is not what theory predicts. The expected functional form for luminosities below the Eddington limit, at times when there is no significant nuclear burning, is a power law. We tested the exponential and power-law functional forms against the best data available: bursts measured with the high-throughput Proportional Counter Array (PCA) on board the Rossi X-ray Timing Explorer. We selected a sample of 35 'clean' and ordinary (i.e., shorter than a few minutes) bursts from 14 different neutron stars that 1) show a large dynamic range in luminosity, 2) are the least affected by disturbances by the accretion disk and 3) lack prolonged nuclear burning through the rp-process. We find indeed that for every burst a power law is a better description than an exponential function. We also find that the decay index is steep, 1.8 on average, and different for every burst. This may be explained by contributions from degenerate electrons and photons to the specific heat capacity of the ignited layer and by deviations from the Stefan-Boltzmann law due to changes in the opacity with density and temperature. Detailed verification of this explanation yields inconclusive results. While the values for the decay index are consistent, changes of it with the burst time scale, as a proxy of ignition depth, and with time are not supported by model calculations.Comment: 10 pages, 7 figures, recommended for publication in A&
    corecore