1,879 research outputs found
Photonic Crystal Nanocavities and Waveguides
Fabrication of optical structures has evolved to a precision which allows us to control light within etched nanostructures. Nano-optic cavities can be used for efficient and flexible concentration of light in small volumes, and control over both emission wavelength and frequency. Conversely, if a periodic pattern is defined in the top semitransparent metal layer by lithography, it is possible to efficiently couple out the light out of a semiconductor and to simultaneously enhance the spontaneous emission rate. Here we demonstrate the use of photonic crystals for efficient light localization and light extraction
Photonic Crystals and their Applications to Efficient Light Emitters
When combined with high index contrast slabs in which light can be efficiently guided, microfabricated two-dimensional photonic bandgap mirrors provide us with the geometries needed to confine and concentrate light into extremely small volumes and to obtain very high field intensities. Fabrication of optical structures has now evolved to a precision which allows us to control light within such etched nanostructures. Sub-wavelength nano-optic cavities can be used for efficient and flexible control over both emission wavelength and frequency, and nanofabricated optical waveguides can be used for efficient coupling of light between devices. The reduction of the size of optical components leads to their integration in large numbers and the possibility to combine different functionalities on a single chip. We show uses of such crystals in functional nonlinear optical devices, such as lasers, modulators, add/drop filters, polarizers and detectors
Design and Focused Ion Beam Fabrication of Single Crystal Diamond Nanobeam Cavities
We present the design and fabrication of nanobeam photonic crystal cavities
in single crystal diamond for applications in cavity quantum electrodynamics.
First, we describe three-dimensional finite-difference time-domain simulations
of a high quality factor (Q ~ 10^6) and small mode volume (V ~ 0.5
({\lambda}/n)^3) device whose cavity resonance corresponds to the zero-phonon
transition (637nm) of the Nitrogen-Vacancy (NV) color center in diamond. This
high Q/V structure, which would allow for strong light-matter interaction, is
achieved by gradually tapering the size of the photonic crystal holes between
the defect center and mirror regions of the nanobeam. Next, we demonstrate two
different focused ion beam (FIB) fabrication strategies to generate thin
diamond membranes and nanobeam photonic crystal resonators from a bulk crystal.
These approaches include a diamond crystal "side-milling" procedure as well as
an application of the "lift-off" technique used in TEM sample preparation.
Finally, we discuss certain aspects of the FIB fabrication routine that are a
challenge to the realization of the high-Q/V designs
Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide
A deterministic design of an ultrahigh Q, wavelength scale mode volume
photonic crystal nanobeam cavity is proposed and experimentally demonstrated.
Using this approach, cavities with Q>10^6 and on-resonance transmission T>90%
are designed. The devices fabricated in Si and capped with low-index polymer,
have Q=80,000 and T=73%. This is, to the best of our knowledge, the highest
transmission measured in deterministically designed, wavelength scale high Q
cavities
Photonic Crystal Cavities and Waveguides
Recently, it has also become possible to microfabricate high reflectivity mirrors by creating two- and three-dimensional periodic structures. These periodic "photonic crystals" can be designed to open up frequency bands within which the propagation of electromagnetic waves is forbidden irrespective of the propagation direction in space and define photonic bandgaps. When combined with high index contrast slabs in which light can be efficiently guided, microfabricated two-dimensional photonic bandgap mirrors provide us with the geometries needed to confine and concentrate light into extremely small volumes and to obtain very high field intensities. Here we show the use of these "artificially" microfabricated crystals in functional nonlinear optical devices, such as lasers, modulators, and waveguides
Observation of coupled-cavity structures in metamaterials
Cataloged from PDF version of article.In this letter, we investigated the transmission properties of metamaterial based coupled-cavity structures. We first calculated the effective parameters of a split-ring resonator (SRR) and composite metamaterial (CMM) structures. Subsequently, we introduced coupled-cavity structures and presented the transmission spectrum of SRR and CMM based coupled-cavity structures. The splitting of eigenmodes was observed due to the interaction between the localized electromagnetic cavity modes. Finally, the dispersion relation and normalized group velocity of the coupled-cavity structures were calculated. The maximum group velocity was found to be 100 times smaller than the speed of light in vacuum. (C) 2008 American Institute of Physics
- …