423 research outputs found
Internal geometry of structurally stitched NCF preforms
Internal geometry of a textile reinforcement is an important factor of the reinforcement performance during the composite manufacturing and service life. In this article, generalized geometrical models of structural stitching loops are presented for the sewing, tufting, and dual-needle stitching methods. The term 'structural' presumes here that the stitching yarn does not only consolidate the plies (as the non-structural one does) but forms also a through-the-thickness (3D) reinforcement. The models account for the general features of the yarn loop geometry and are believed to allow for enough precise modelling on the meso-scale (textile unit cell) level. The modelling approach is validated with experimental data
A statistical treatment of the loss of stiffness during cyclic loading for short fiber reinforced injection molded composites
Injection molded short fiber reinforced composites (SFRC) have different local fiber orientation distribution (FOD) at every point. SN curves of short fiber reinforced composites are known to depend on the fiber orientation distribution. Such materials also suffer from continuous loss of stiffness during cyclic loading. It is not known whether the loss of stiffness is different for SFRC with different FOD. A statistical analysis of the loss of stiffness curves is presented in this paper. Tension-tension fatigue experiments are performed and loss of stiffness is collected for every data point in the SN curve. A systematic method for comparing the loss of stiffness is developed. It is concluded that the difference in loss of stiffness curves for coupons of SFRC with different FOD is not statistically significant. (C) 2016 Elsevier Ltd. All rights reserved
Finite element modelling of inter-ply delamination and intra-yarn cracking in textile laminates
The aim of the current study is to demonstrate the effect of inter-ply delamination on stiffness degradation of multi-ply woven composites. Such a demonstration becomes possible due to new technique of modelling textile laminates. It is based on set of boundary value problems for unit cell of a single ply, where boundary conditions imitate interaction with the other plies. Once these problems are solved, local stress distribution and stiffness of the laminate are determined analytically as function of number of the plies and local stress/strain fields obtained in these problems. Hence, it opens the road for an efficient modelling of delamination, which is described as gradual reduction of plies in the laminate
Do high frequency acoustic emission events always represent fibre failure in CFRP laminates?
© 2017 Elsevier Ltd When damage in carbon fibre reinforced composites (CFRP) is monitored by acoustic emission (AE), it is a common belief that high frequency AE events originate from fibre failure. This shows that this statement may not correspond to the reality, and matrix cracks can emit high frequency AE signals. Quasi-static tension of [−45 2 /0 2 /+45 2 /90 2 ] s laminates was monitored by AE, Digital Image Correlation (DIC) on the surface of the sample and in-situ optical microscopy on the sample's polished edge. Unsupervised k-means clustering algorithm was applied to the AE results. By comparison with the direct DIC and microscopic observations, the AE cluster with high frequency and low amplitude was found to correspond to directly observed matrix cracks
FE-modeling of damage of twill carbon/epoxy composite on meso-scale, materials characterization and experimental verification
Aim of this work is to evaluate the damage in twill carbon/epoxy composites on meso-scale level (fabric unit cell level). Averaged stiffness, Poisson ratios of pre- and post damage phase are calculated based on numerical homogenization technique with periodic boundary conditions (PBCs). The static strengths and initiation of the damage are calculated and validated by experiments. The anisotropic stiffness degradation model is implemented into Abaqus (R) UMAT. The algorithm of quasi-static damage is further used to model the cycles of the fatigue loading, together with the experimental S-N curves of unidirectional composite (UD), utilized as input data for the impregnated yarns. The output of the model is S-N curve of textile composites
От Редакционного Совета
Номер приурочен столетней годовщине выпуска первого номера журнала "Известия Томского технологического института"
Time-Delay and Doppler Tests of the Lorentz Symmetry of Gravity
Modifications to the classic time-delay effect and Doppler shift in general relativity (GR) are studied in the context of the Lorentz-violating standard-model extension (SME). We derive the leading Lorentz- violating corrections to the time-delay and Doppler shift signals, for a light ray passing near a massive body. It is demonstrated that anisotropic coefficients for Lorentz violation control a time-dependent behavior of these signals that is qualitatively different from the conventional case in GR. Estimates of sensitivities to gravity-sector coefficients in the SME are given for current and future experiments, including the recent Cassini solar conjunction experiment
A feasibility study of the Master SN curve approach for short fiber reinforced composites
Short fiber reinforced composite (SFRC) materials have a different fiber orientation distribution (FOD) at every point. The fatigue properties of SFRC are known to depend on the FOD. The Master SN curve (MSNC) method for predicting an SN curve for a given FOD based on the known SN curve for the reference FOD is used to predict the local SN curve of a SFRC component by relating the damage at the microscopic level to the macroscopic fatigue properties. A simplified version of MSNC method, which needs even less experimental input, uses an assumption of constant SN curve slope is also presented in this paper. The paper validates both variants of the MSNC method on three sets of experimental data on fatigue of short fiber composites and analyses their accuracy. It is demonstrated that the MSNC approach needs only one SN curve as input with no specific requirements to the fiber orientation of the test coupon. Test coupons could have either uniform fiber orientation in the thickness or a "skin core" orientation variation. (C) 2016 Elsevier Ltd. All rights reserved
Multi-instrument in-situ damage monitoring in quasi-isotropic CFRP laminates under tension
© 2018 Digital Image Correlation monitoring of the surface strains, microscopic in-situ observations of the micro-damage on the specimen edge and Acoustic Emission (AE) are utilized simultaneously during tension tests of quasi-isotropic carbon fibre reinforced polymer composites. It is found that the cluster analysis for characteristic parameters of AE events (the main being the signal amplitude and frequency) does not unambiguously identify the type of damage which causes the event. With optical instruments, it is observed that the signatures of AE events depend on the position of the ply where damage happens and on the ply orientation (90° vs 45°). Robust evidences for the variations in AE characteristics of damage modes in different lay-ups are presented. AE events, originated from surface cracks, have high amplitude and low frequency, whereas AE events, originated from transverse cracks in the inner plies, have low amplitude and high frequency characteristics. Any conclusion for fibre breaks are not reached in this study. Therefore, measurements in this study rather point out that the AE events, which could be interpreted as fibre breaks because of their high frequency characteristics, as optical observations prove, correspond to other damage types in quasi-isotropic laminates
- …