1,385 research outputs found

    Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster

    Full text link
    We develop a stochastic modeling approach based on spatial point processes of log-Gaussian Cox type for a collection of around 5000 landslide events provoked by a precipitation trigger in Sicily, Italy. Through the embedding into a hierarchical Bayesian estimation framework, we can use the Integrated Nested Laplace Approximation methodology to make inference and obtain the posterior estimates. Several mapping units are useful to partition a given study area in landslide prediction studies. These units hierarchically subdivide the geographic space from the highest grid-based resolution to the stronger morphodynamic-oriented slope units. Here we integrate both mapping units into a single hierarchical model, by treating the landslide triggering locations as a random point pattern. This approach diverges fundamentally from the unanimously used presence-absence structure for areal units since we focus on modeling the expected landslide count jointly within the two mapping units. Predicting this landslide intensity provides more detailed and complete information as compared to the classically used susceptibility mapping approach based on relative probabilities. To illustrate the model's versatility, we compute absolute probability maps of landslide occurrences and check its predictive power over space. While the landslide community typically produces spatial predictive models for landslides only in the sense that covariates are spatially distributed, no actual spatial dependence has been explicitly integrated so far for landslide susceptibility. Our novel approach features a spatial latent effect defined at the slope unit level, allowing us to assess the spatial influence that remains unexplained by the covariates in the model

    Money in a New-Keynesian model estimated with German data

    Get PDF
    In this paper we estimate a simple New-Keynesian DSGE model with German data for the sample period 1970:q1 to 1998:q4. Contrary to a number of recent similar papers estimated with US and euro-area data, we find that real money balances contribute significantly to the determination of inflation and of the dynamics of output. We estimate our model using a maximum likelihood technique under a full set of structural shocks. We do not rule out indeterminate solutions a priori. Under multiple stable paths we close the model using the minimum-state-variable solution. -- In diesem Diskussionspapier schĂ€tzen wir ein einfaches Neukeynesianisches dynamisches Gleichgewichtsmodel fĂŒr deutsche Daten und den Zeitraum zwischen dem ersten Quartal 1970 und dem letzten Quartal 1998. Im Unterschied zu einer Reihe von anderen Arbeiten fĂŒr die Vereinigten Staten von Amerika und dem Euroraum deuten unsere Ergebnisse darauf hin, dass die reale Geldmenge einen signifikanten Beitrag zur ErklĂ€rung der Inflation und der Dynamik des Bruttoinlandsprodukts leistet. Das Model wird mit Hilfe eines Maximum-Likelihood-Verfahrens geschĂ€tzt und erlaubt die Identifikation von strukturellen Schocks. Parameterkonstellationen, die zu multiplen Gleichgewichten fĂŒhren, werden nicht a-priori ausgeschlossen, sondern mit Hilfe des Minimum-State-Variable-Ansatzes behandelt.Maximum-Likelihood,DSGE,MSV solution,New-Keynesian model,Germany

    Cargo Transport By Myosin Va Molecular Motors Within Three-Dimensional In Vitro Models Of The Intracellular Actin Cytoskeletal Network

    Get PDF
    Intracellular cargo transport involves the movement of critical cellular components (e.g. vesicles, organelles, mRNA, chromosomes) along cytoskeletal tracks by tiny molecular motors. Myosin Va motors have been demonstrated to play a vital role in the transport of cargos destined for the cell membrane by navigating their cargos through the three-dimensional actin networks of the cell. Transport of cargo through these networks presents many challenges, including directional and physical obstacles which teams of myosin Va-bound to a single cargo must overcome. Specifically, myosin Va motors are presented with numerous actin-actin intersections and dense networks of filaments which can act as a physical barrier to transport. Due to the complexities of studying myosin Va cargo transport in cells, much effort has been focused on the in vitro observation and analysis of myosin Va transport along single actin filaments or simple actin cytoskeletal models. However, these model systems often rely on non-physiological cargos (e.g. beads, quantum dots) and two-dimensional arrangements of actin attached to glass surfaces. Interestingly, a disconnect exists between the transport of cargo on these simple model systems and studies of myosin Va transport on suspended 3D actin arrangements or cellular networks which show longer run lengths, increased velocities, and straighter, more directed trajectories. One solution to this discrepancy is that the cell may use the fluidity of the cargo surface, the recruitment of myosin Va motor teams, and the 3D geometry of the actin, to finely tune the transport of intracellular cargo depending on cellular need. To understand how myosin Va motors transport their cargo through 3D networks of actin, we investigated myosin Va motor ensembles transporting fluorescent 350 nm lipid-bilayer cargo through arrangements of suspended 3D actin filaments. This was accomplished using single molecule fluorescent imaging, three-dimensional super resolution Stochastic Optical Reconstruction Microscopy (STORM), optical tweezers, and in silico modeling. We found that when moving along 3D actin filaments, myosin motors could be recruited from across the fluid lipid cargo’s surface to the filaments which enabled dynamic teams to be formed and explore the full actin filaments binding landscape. When navigating 3D actin-actin intersections these teams capable of maneuvering their cargo through the intersection in a way that encouraged the vesicles to continue straight rather than switch filaments and turn at the intersection. We hypothesized that this finding may be the source of the relatively straight directed runs by myosin Va-bound cargo observed in living cells. To test this, we designed 3D actin networks where the vesicles interacted with 2-6 actin filaments simultaneously. Actin forms polarized filaments, which, in cells, generally have their plus-ends facing the exterior of the cell; the same direction in which myosin Va walks. We found that to maintain straight directed trajectories and not become stationary within the network, vesicles needed to move along filaments with a bias in their polarity. This allows for cargo-bound motors to align their motion along the polarized networks and produced productive motion despite physical and directional obstacles. Together this work demonstrates the physical properties of the cargo, the geometric arrangement of the actin, and the mechanical properties of the motor are all critical aspects of a robust myosin Va transport system

    The Liquidation-Reincorporation Device - Analysis and Proposed Solutions

    Get PDF

    The Functional Derivation of Master Equations

    Full text link
    Master equations describe the quantum dynamics of open systems interacting with an environment. They play an increasingly important role in understanding the emergence of semiclassical behavior and the generation of entropy, both being related to quantum decoherence. Presently we derive the exact master equation for a homogeneous scalar Higgs or inflaton like field coupled to an environment field represented by an infinite set of harmonic oscillators. Our aim is to demonstrate a derivation directly from the path integral representation of the density matrix propagator. Applications and generalizations of this result are discussed.Comment: 10 pages; LaTex. - Contribution to the workshop Hadron Physics VI, March 1998, Florianopolis (Brazil); proceedings, E. Ferreira et al., eds. (World Scientific). Replaced by slightly modified published versio

    Joint modelling of landslide counts and sizes using spatial marked point processes with sub-asymptotic mark distributions

    Get PDF
    To accurately quantify landslide hazard in a region of Turkey, we develop new marked point-process models within a Bayesian hierarchical framework for the joint prediction of landslide counts and sizes. We leverage mark distributions justified by extreme-value theory, and specifically propose ‘sub-asymptotic’ distributions to flexibly model landslide sizes from low to high quantiles. The use of intrinsic conditional autoregressive priors, and a customised adaptive Markov chain Monte Carlo algorithm, allow for fast fully Bayesian inference. We show that sub-asymptotic mark distributions provide improved predictions of large landslide sizes, and use our model for risk assessment and hazard mapping.</p

    Computational probes of molecular motion in the Lewis and Whanstrom model for ortho-terphenyl

    Full text link
    We use molecular dynamics simulations to investigate translational and rotational diffusion in a rigid three-site model of the fragile glass former ortho-terphenyl, at 260 K < T < 346 K and ambient pressure. An Einstein formulation of rotational motion is presented, which supplements the commonly-used Debye model. The latter is shown to break down at supercooled temperatures as the mechanism of molecular reorientation changes from small random steps to large infrequent orientational jumps. We find that the model system exhibits non-Gaussian behavior in translational and rotational motion, which strengthens upon supercooling. Examination of particle mobility reveals spatially heterogeneous dynamics in translation and rotation, with a strong spatial correlation between translationally and rotationally mobile particles. Application of the Einstein formalism to the analysis of translation-rotation decoupling results in a trend opposite to that seen in conventional approaches based on the Debye formalism, namely an enhancement in the effective rate of rotational motion relative to translation upon supercooling.Comment: 11 pages, 8 figures, 1 tabl

    Deconfinement at finite chemical potential

    Full text link
    In a confining, renormalisable, Dyson-Schwinger equation model of two-flavour QCD we explore the chemical-potential dependence of the dressed-quark propagator, which provides a means of determining the behaviour of the chiral and deconfinement order parameters, and low-energy pion observables. We find coincident, first order deconfinement and chiral symmetry restoration transitions at \mu_c = 375 MeV. f_\pi is insensitive to \mu until \mu \approx \mu_0 = 0.7 mu_c when it begins to increase rapidly. m_\pi is weakly dependent on \mu, decreasing slowly with \mu and reaching a minimum 6% less than its \mu=0 value at \mu=\mu_0. In a two-flavour free-quark gas at \mu=\mu_c the baryon number density would be approximately 3 \rho_0, where \rho_0=0.16 fm^{-3}; while in such a gas at \mu_0 the density is \rho_0.Comment: 11 pages, 3 figures, epsfig.sty, elsart.st

    Improvement of European translational cancer research. Collaboration between comprehensive cancer centers

    Get PDF
    Even though the increasing incidence of cancer is mainly a consequence of a population with a longer life span, part of this augmentation is related to the increasing prevalence of patients living with a chronic cancer disease. To fight the problem, improved preventive strategies are mandatory in combination with an innovative health care provision that is driven by research. To overcome the weakness of translational research the OECI is proposing a practical approach as part of a strategy foreseen by the EUROCAN+PLUS feasibility study, which was launched by the EC in order to identify mechanisms for the coordination of cancer research in Europe
    • 

    corecore