36 research outputs found

    Manifold-Aware CycleGAN for High-Resolution Structural-to-DTI Synthesis

    Full text link
    Unpaired image-to-image translation has been applied successfully to natural images but has received very little attention for manifold-valued data such as in diffusion tensor imaging (DTI). The non-Euclidean nature of DTI prevents current generative adversarial networks (GANs) from generating plausible images and has mainly limited their application to diffusion MRI scalar maps, such as fractional anisotropy (FA) or mean diffusivity (MD). Even if these scalar maps are clinically useful, they mostly ignore fiber orientations and therefore have limited applications for analyzing brain fibers. Here, we propose a manifold-aware CycleGAN that learns the generation of high-resolution DTI from unpaired T1w images. We formulate the objective as a Wasserstein distance minimization problem of data distributions on a Riemannian manifold of symmetric positive definite 3x3 matrices SPD(3), using adversarial and cycle-consistency losses. To ensure that the generated diffusion tensors lie on the SPD(3) manifold, we exploit the theoretical properties of the exponential and logarithm maps of the Log-Euclidean metric. We demonstrate that, unlike standard GANs, our method is able to generate realistic high-resolution DTI that can be used to compute diffusion-based metrics and potentially run fiber tractography algorithms. To evaluate our model's performance, we compute the cosine similarity between the generated tensors principal orientation and their ground-truth orientation, the mean squared error (MSE) of their derived FA values and the Log-Euclidean distance between the tensors. We demonstrate that our method produces 2.5 times better FA MSE than a standard CycleGAN and up to 30% better cosine similarity than a manifold-aware Wasserstein GAN while synthesizing sharp high-resolution DTI.Comment: Accepted at MICCAI 2020 International Workshop on Computational Diffusion MR

    Anatomically-aware Uncertainty for Semi-supervised Image Segmentation

    Full text link
    Semi-supervised learning relaxes the need of large pixel-wise labeled datasets for image segmentation by leveraging unlabeled data. A prominent way to exploit unlabeled data is to regularize model predictions. Since the predictions of unlabeled data can be unreliable, uncertainty-aware schemes are typically employed to gradually learn from meaningful and reliable predictions. Uncertainty estimation methods, however, rely on multiple inferences from the model predictions that must be computed for each training step, which is computationally expensive. Moreover, these uncertainty maps capture pixel-wise disparities and do not consider global information. This work proposes a novel method to estimate segmentation uncertainty by leveraging global information from the segmentation masks. More precisely, an anatomically-aware representation is first learnt to model the available segmentation masks. The learnt representation thereupon maps the prediction of a new segmentation into an anatomically-plausible segmentation. The deviation from the plausible segmentation aids in estimating the underlying pixel-level uncertainty in order to further guide the segmentation network. The proposed method consequently estimates the uncertainty using a single inference from our representation, thereby reducing the total computation. We evaluate our method on two publicly available segmentation datasets of left atria in cardiac MRIs and of multiple organs in abdominal CTs. Our anatomically-aware method improves the segmentation accuracy over the state-of-the-art semi-supervised methods in terms of two commonly used evaluation metrics.Comment: Accepted at Medical Image Analysis. Code is available at: $\href{https://github.com/adigasu/Anatomically-aware_Uncertainty_for_Semi-supervised_Segmentation}{Github}

    HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation

    Full text link
    Recently, dense connections have attracted substantial attention in computer vision because they facilitate gradient flow and implicit deep supervision during training. Particularly, DenseNet, which connects each layer to every other layer in a feed-forward fashion, has shown impressive performances in natural image classification tasks. We propose HyperDenseNet, a 3D fully convolutional neural network that extends the definition of dense connectivity to multi-modal segmentation problems. Each imaging modality has a path, and dense connections occur not only between the pairs of layers within the same path, but also between those across different paths. This contrasts with the existing multi-modal CNN approaches, in which modeling several modalities relies entirely on a single joint layer (or level of abstraction) for fusion, typically either at the input or at the output of the network. Therefore, the proposed network has total freedom to learn more complex combinations between the modalities, within and in-between all the levels of abstraction, which increases significantly the learning representation. We report extensive evaluations over two different and highly competitive multi-modal brain tissue segmentation challenges, iSEG 2017 and MRBrainS 2013, with the former focusing on 6-month infant data and the latter on adult images. HyperDenseNet yielded significant improvements over many state-of-the-art segmentation networks, ranking at the top on both benchmarks. We further provide a comprehensive experimental analysis of features re-use, which confirms the importance of hyper-dense connections in multi-modal representation learning. Our code is publicly available at https://www.github.com/josedolz/HyperDenseNet.Comment: Paper accepted at IEEE TMI in October 2018. Last version of this paper updates the reference to the IEEE TMI paper which compares the submissions to the iSEG 2017 MICCAI Challeng

    Spectral Graph Transformer Networks for Brain Surface Parcellation

    Full text link
    The analysis of the brain surface modeled as a graph mesh is a challenging task. Conventional deep learning approaches often rely on data lying in the Euclidean space. As an extension to irregular graphs, convolution operations are defined in the Fourier or spectral domain. This spectral domain is obtained by decomposing the graph Laplacian, which captures relevant shape information. However, the spectral decomposition across different brain graphs causes inconsistencies between the eigenvectors of individual spectral domains, causing the graph learning algorithm to fail. Current spectral graph convolution methods handle this variance by separately aligning the eigenvectors to a reference brain in a slow iterative step. This paper presents a novel approach for learning the transformation matrix required for aligning brain meshes using a direct data-driven approach. Our alignment and graph processing method provides a fast analysis of brain surfaces. The novel Spectral Graph Transformer (SGT) network proposed in this paper uses very few randomly sub-sampled nodes in the spectral domain to learn the alignment matrix for multiple brain surfaces. We validate the use of this SGT network along with a graph convolution network to perform cortical parcellation. Our method on 101 manually-labeled brain surfaces shows improved parcellation performance over a no-alignment strategy, gaining a significant speed (1400 fold) over traditional iterative alignment approaches.Comment: Equal contribution of R. He and K. Gopinat

    Adversarial normalization for multi domain image segmentation

    Full text link
    Image normalization is a critical step in medical imaging. This step is often done on a per-dataset basis, preventing current segmentation algorithms from the full potential of exploiting jointly normalized information across multiple datasets. To solve this problem, we propose an adversarial normalization approach for image segmentation which learns common normalizing functions across multiple datasets while retaining image realism. The adversarial training provides an optimal normalizer that improves both the segmentation accuracy and the discrimination of unrealistic normalizing functions. Our contribution therefore leverages common imaging information from multiple domains. The optimality of our common normalizer is evaluated by combining brain images from both infants and adults. Results on the challenging iSEG and MRBrainS datasets reveal the potential of our adversarial normalization approach for segmentation, with Dice improvements of up to 59.6% over the baseline.Comment: Submitted to ISBI 202

    Spectral Forests: Learning of Surface Data, Application to Cortical Parcellation

    Get PDF
    International audienceThis paper presents a new method for classifying surface datavia spectral representations of shapes. Our approach benefits classificationproblems that involve data living on surfaces, such as in cortical parcellation.For instance, current methods for labeling cortical points into surface parcelsoften involve a slow mesh deformation toward pre-labeled atlases, requiringas much as 4 hours with the established FreeSurfer. This may burden neurosciencestudies involving region-specific measurements. Learning techniquesoffer an attractive computational advantage, however, their representation ofspatial information, typically defined in a Euclidean domain, may be inadequatefor cortical parcellation. Indeed, cortical data resides on surfaces thatare highly variable in space and shape. Consequently, Euclidean representationsof surface data may be inconsistent across individuals. We proposeto fundamentally change the spatial representation of surface data, by exploitingspectral coordinates derived from the Laplacian eigenfunctions ofshapes. They have the advantage over Euclidean coordinates, to be geometryaware and to parameterize surfaces explicitly. This change of paradigm,from Euclidean to spectral representations, enables a classifier to be applieddirectly on surface data via spectral coordinates. In this paper, we decide tobuild upon the successful Random Decision Forests algorithm and improve itsspatial representation with spectral features. Our method, Spectral Forests,is shown to significantly improve the accuracy of cortical parcellations overstandard Random Decision Forests (74% versus 28% Dice overlaps), and produceaccuracy equivalent to FreeSurfer in a fraction of its time (23 secondsversus 3 to 4 hours)
    corecore