809 research outputs found

    Microwave device investigations Semiannual progress report, 1 Apr. - 1 Oct. 1968

    Get PDF
    Beam-plasma interactions, cyclotron harmonic instabilities, harmonic generation in beam-plasma system, relativistic electron beam studies, and materials test

    Frequency multiplication in high-energy electron beams Semiannual progress report, 1 Oct. 1967 - 31 Mar. 1968

    Get PDF
    Electron beam-plasma interactions, cyclotron harmonic instabilities, paramagnetic and semiconductor materials, and harmonic current generatio

    Microwave device investigations

    Get PDF
    Several tasks were active during this report period: (1) noise modulation in avalanche-diode devices; (2) schottky-barrier microwave devices; (3) intermodulation products in IMPATT diode amplifiers; (4) harmonic generation using Read-diode varactors; and (5) fabrication of GaAs Schottky-barrier IMPATT diodes

    Improving Refrigerant Flammability Limit Test Methods Based on ASTM E681

    Get PDF
    An improved test method for refrigerant flammability limit measurements is presented. Such measurements are essential for determining the lower flammability limits of refrigerants, and thus their safety classifications. Predicated on expert interviews and experiments, several changes to ASTM E681 and related standards are recommended, as follows. The 12 L glass vessel should be replaced with transparent polycarbonate (or other transparent plastic) to eliminate etching by HF and to facilitate vessel penetrations. The orientation of the electrode supports and the temperature probe should be changed from vertical to horizontal to prevent flame quenching. Venting should not occur before the flame stops propagating near the vessel wall. All penetrations should be removed from the rubber stopper, it should be weighted for a total mass of 2.5 kg, and the initial pressure should be 90 kPa absolute. The flame angle should be plotted versus refrigerant concentration, whereby a least-squares line determines the flammability limit at a flame angle of 90°. Finally, the vessel pressure should be measured during each test to evaluate the pressure rise during flame propagation and to help identify the onset of venting. These changes are relatively easy to implement and they improve the test precision and reproducibility without significantly changing previously established flammability limits

    The impact of organ motion and the appliance of mitigation strategies on the effectiveness of hypoxia-guided proton therapy for non-small cell lung cancer.

    Get PDF
    BACKGROUND AND PURPOSE To investigate the impact of organ motion on hypoxia-guided proton therapy treatments for non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS Hypoxia PET and 4D imaging data of six NSCLC patients were used to simulate hypoxia-guided proton therapy with different motion mitigation strategies including rescanning, breath-hold, respiratory gating and tumour tracking. Motion-induced dose degradation was estimated for treatment plans with dose painting of hypoxic tumour sub-volumes at escalated dose levels. Tumour control probability (TCP) and dosimetry indices were assessed to weigh the clinical benefit of dose escalation and motion mitigation. In addition, the difference in normal tissue complication probability (NTCP) between escalated proton and photon VMAT treatments have been assessed. RESULTS Motion-induced dose degradation was found for target coverage (CTV V95% up to -4%) and quality of the dose-escalation-by-contour (QRMS up to 6%) as a function of motion amplitude and amount of dose escalation. The TCP benefit coming from dose escalation (+4-13%) outweighs the motion-induced losses (<2%). Significant average NTCP reductions of dose-escalated proton plans were found for lungs (-14%), oesophagus (-10%) and heart (-16%) compared to conventional VMAT plans. The best plan dosimetry was obtained with breath hold and respiratory gating with rescanning. CONCLUSION NSCLC affected by hypoxia appears to be a prime target for proton therapy which, by dose-escalation, allows to mitigate hypoxia-induced radio-resistance despite the sensitivity to organ motion. Furthermore, substantial reduction in normal tissue toxicity can be expected compared to conventional VMAT. Accessibility and standardization of hypoxia imaging and clinical trials are necessary to confirm these findings in a clinical setting

    Ultra-high dose rate dosimetry for pre-clinical experiments with mm-small proton fields.

    Get PDF
    PURPOSE To characterize an experimental setup for ultra-high dose rate (UHDR) proton irradiations, and to address the challenges of dosimetry in millimetre-small pencil proton beams. METHODS At the PSI Gantry 1, high-energy transmission pencil beams can be delivered to biological samples and detectors up to a maximum local dose rate of ∼9000 Gy/s. In the presented setup, a Faraday cup is used to measure the delivered number of protons up to ultra-high dose rates. The response of transmission ion-chambers, as well as of different field detectors, was characterized over a wide range of dose rates using the Faraday cup as reference. RESULTS The reproducibility of the delivered proton charge was better than 1 % in the proposed experimental setup. EBT3 films, Al2O3:C optically stimulated luminescence detectors and a PTW microDiamond were used to validate the predicted dose. Transmission ionization chambers showed significant volume ion-recombination (>30 % in the tested conditions) which can be parametrized as a function of the maximum proton current density. Over the considered range, EBT3 films, inorganic scintillator-based screens and the PTW microDiamond were demonstrated to be dose rate independent within ±3 %, ±1.8 % and ±1 %, respectively. CONCLUSIONS Faraday cups are versatile dosimetry instruments that can be used for dose estimation, field detector characterization and on-line dose verification for pre-clinical experiments in UHDR proton pencil beams. Among the tested detectors, the commercial PTW microDiamond was found to be a suitable option to measure real time the dosimetric properties of narrow pencil proton beams for dose rates up to 2.2 kGy/s

    The modern pollen-vegetation relationship of a tropical forest-savannah mosaic landscape, Ghana, West Africa

    Get PDF
    Transitions between forest and savannah vegetation types in fossil pollen records are often poorly understood due to over-production by taxa such as Poaceae and a lack of modern pollen-vegetation studies. Here, modern pollen assemblages from within a forest-savannah transition in West Africa are presented and compared, their characteristic taxa discussed, and implications for the fossil record considered. Fifteen artificial pollen traps were deployed for 1 year, to collect pollen rain from three vegetation plots within the forest-savannah transition in Ghana. High percentages of Poaceae and Melastomataceae/Combretaceae were recorded in all three plots. Erythrophleum suaveolens characterised the forest plot, Manilkara obovata the transition plot and Terminalia the savannah plot. The results indicate that Poaceae pollen influx rates provide the best representation of the forest-savannah gradient, and that a Poaceae abundance of >40% should be considered as indicative of savannah-type vegetation in the fossil record

    Gas and seismicity within the Istanbul seismic gap

    Get PDF
    Understanding micro-seismicity is a critical question for earthquake hazard assessment. Since the devastating earthquakes of Izmit and Duzce in 1999, the seismicity along the submerged section of North Anatolian Fault within the Sea of Marmara (comprising the “Istanbul seismic gap”) has been extensively studied in order to infer its mechanical behaviour (creeping vs locked). So far, the seismicity has been interpreted only in terms of being tectonic-driven, although the Main Marmara Fault (MMF) is known to strike across multiple hydrocarbon gas sources. Here, we show that a large number of the aftershocks that followed the M 5.1 earthquake of July, 25th 2011 in the western Sea of Marmara, occurred within a zone of gas overpressuring in the 1.5–5 km depth range, from where pressurized gas is expected to migrate along the MMF, up to the surface sediment layers. Hence, gas-related processes should also be considered for a complete interpretation of the micro-seismicity (~M < 3) within the Istanbul offshore domain

    UV Spectropolarimetry with Polstar: Massive Star Binary Colliding Winds

    Full text link
    The winds of massive stars are important for their direct impact on the interstellar medium, and for their influence on the final state of a star prior to it exploding as a supernova. However, the dynamics of these winds is understood primarily via their illumination from a single central source. The Doppler shift seen in resonance lines is a useful tool for inferring these dynamics, but the mapping from that Doppler shift to the radial distance from the source is ambiguous. Binary systems can reduce this ambiguity by providing a second light source at a known radius in the wind, seen from orbitally modulated directions. From the nature of the collision between the winds, a massive companion also provides unique additional information about wind momentum fluxes. Since massive stars are strong ultraviolet (UV) sources, and UV resonance line opacity in the wind is strong, UV instruments with a high resolution spectroscopic capability are essential for extracting this dynamical information. Polarimetric capability also helps to further resolve ambiguities in aspects of the wind geometry that are not axisymmetric about the line of sight, because of its unique access to scattering direction information. We review how the proposed MIDEX-scale mission Polstar can use UV spectropolarimetric observations to critically constrain the physics of colliding winds, and hence radiatively-driven winds in general. We propose a sample of 20 binary targets, capitalizing on this unique combination of illumination by companion starlight, and collision with a companion wind, to probe wind attributes over a range in wind strengths. Of particular interest is the hypothesis that the radial distribution of the wind acceleration is altered significantly, when the radiative transfer within the winds becomes optically thick to resonance scattering in multiple overlapping UV lines.Comment: 26 pages, 12 figures, Review in a topical collection series of Astrophysics and Space Sciences on the proposed Polstar satellite. arXiv admin note: substantial text overlap with arXiv:2111.1155
    corecore