180 research outputs found

    PET Imaging a MPTP-Induced Mouse Model of Parkinson’s Disease Using the Fluoropropyl-Dihydrotetrabenazine Analog [18F]-DTBZ (AV-133)

    Get PDF
    Parkinson’s disease (PD) is characterized by the loss of dopamine-producing neurons in the nigrostriatal system. Numerous researchers in the past have attempted to track the progression of dopaminergic depletion in PD. We applied a quantitative non-invasive PET imaging technique to follow this degeneration process in an MPTP-induced mouse model of PD. The VMAT2 ligand 18F-DTBZ (AV-133) was used as a radioactive tracer in our imaging experiments to monitor the changes of the dopaminergic system. Intraperitoneal administrations of MPTP (a neurotoxin) were delivered to mice at regular intervals to induce lesions consistent with PD. Our results indicate a significant decline in the levels of striatal dopamine and its metabolites (DOPAC and HVA) following MPTP treatment as determined by HPLC method. Images obtained by positron emission tomography revealed uptake of 18F-DTBZ analog in the mouse striatum. However, reduction in radioligand binding was evident in the striatum of MPTP lesioned animals as compared with the control group. Immunohistochemical analysis further confirmed PET imaging results and indicated the progressive loss of dopaminergic neurons in treated animals compared with the control counterparts. In conclusion, our findings suggest that MPTP induced PD in mouse model is appropriate to follow the degeneration of dopaminergic system and that 18F-DTBZ analog is a potentially sensitive radiotracer that can used to diagnose changes associated with PD by PET imaging modality

    Search for Parity Violation in 93Nb Neutron Resonances

    Get PDF
    A new search has been performed for parity violation in the compound nuclear states of 94Nb by measuring the helicity dependence of the neutron total cross section. Transmission measurements on a thick niobium target were performed by the time-of-flight method at the Manuel Lujan Neutron Scattering Center with a longitudinally polarized neutron beam in the energy range 32 to 1000 eV. A total of 18 p-wave resonances in 93Nb were studied with none exhibiting a statistically significant parity-violating longitudinal asymmetry. An upper limit of 1.0Γ—10-7 eV (95% confidence level) was obtained for the weak spreading widthΞ“w in 93Nb

    Interface-enhanced conductivities in surfactant-mediated, solution-grown ionic crystalline complexes

    Get PDF
    Renewable energy is increasingly relying on optimized electrolytes and interfaces. In this work, Tween 20 and sodium chloride are selected as a model system to reveal the effects of surfactants on salt crystallization in the context of ionic conductivity and interface optimization. At a varied crystallization speed and mix ratio, it is demonstrated that the resultant solution-grown ionic crystalline complexes can achieve a highly tunable ion transport with a controllable crystalline interface. X-ray diffraction results rule out the possibility of polymorphism in the NaCl/Tween 20 systems, which further supports the importance of an optimized crystalline network for optimizing permittivity or ionic conductivity. Raman mapping and machine learning techniques are used to perform semantic segmentation on highly heterogeneous NaCl/Tween 20 complexes. Furthermore, FTIR measurements demonstrate that inter- and intra-molecular interactions play critical roles in the formation of these crystals. This work lays a foundation toward future optimization of such complex ion systems for a specific salt or crystallization modifier in energy storage or ion transport applications

    Synthesis and characterization of poly(amino acid methacrylate)-stabilized diblock copolymer nano-objects

    Get PDF
    Amino acids constitute one of Nature's most important building blocks. Their remarkably diverse properties (hydrophobic/hydrophilic character, charge density, chirality, reversible cross-linking etc.) dictate the structure and function of proteins. The synthesis of artificial peptides and proteins comprising main chain amino acids is of particular importance for nanomedicine. However, synthetic polymers bearing amino acid side-chains are more readily prepared and may offer desirable properties for various biomedical applications. Herein we describe an efficient route for the synthesis of poly(amino acid methacrylate)stabilized diblock copolymer nano-objects. First, either cysteine or glutathione is reacted with a commercially available methacrylate-acrylate adduct to produce the corresponding amino acid-based methacrylic monomer (CysMA or GSHMA). Well-defined water-soluble macromolecular chain transfer agents (PCysMA or PGSHMA macro-CTAs) are then prepared via RAFT polymerization, which are then chain-extended via aqueous RAFT dispersion polymerization of 2-hydroxypropyl methacrylate. In situ polymerization-induced self-assembly (PISA) occurs to produce sterically-stabilized diblock copolymer nano-objects. Although only spherical nanoparticles could be obtained when PGSHMA was used as the sole macro-CTA, either spheres, worms or vesicles can be prepared using either PCysMA macro-CTA alone or binary mixtures of poly(glycerol monomethacrylate) (PGMA) with either PCysMA or PGSHMA macro-CTAs. The worms formed soft free-standing thermo-responsive gels that undergo degelation on cooling as a result of a worm-to-sphere transition. Aqueous electrophoresis studies indicate that all three copolymer morphologies exhibit cationic character below pH 3.5 and anionic character above pH 3.5. This pH sensitivity corresponds to the known behavior of the poly(amino acid methacrylate) steric stabilizer chains

    CENGO: a web-based serious game to increase the programming knowledge levels of computer engineering students

    Get PDF
    In recent years, games are used to increase the level of knowledge and experience of individuals working in different domains. Especially in the education field, there are several different serious games to teach the subjects of the lectures or other educational materials to students in an enjoyable way. Hence, this study proposes a quantitative research approach to increase the programming knowledge levels of the first-year undergraduate students at computer engineering departments. For this aim, a responsive web platform was developed to teach the syntax and logic of C programming language by using some game elements. Therefore, the students have a chance to repeat the topics related to C programming language continuously since the platform is always accessible. To figure out the efficiency of the designed environment, 10 first-year computer engineering students were selected. According to the results obtained from the user tests, this game can be used as an educational tool, which supports the traditional training methods, to increase the knowledge levels of students about the syntax and logic of C programming language

    Genetic Incorporation of Human Metallothionein into the Adenovirus Protein IX for Non-Invasive SPECT Imaging

    Get PDF
    As the limits of existing treatments for cancer are recognized, clearly novel therapies must be considered for successful treatment; cancer therapy using adenovirus vectors is a promising strategy. However tracking the biodistribution of adenovirus vectors in vivo is limited to invasive procedures such as biopsies, which are error prone, non-quantitative, and do not give a full representation of the pharmacokinetics involved. Current non-invasive imaging strategies using reporter gene expression have been applied to analyze adenoviral vectors. The major drawback to approaches that tag viruses with reporter genes is that these systems require initial viral infection and subsequent cellular expression of a reporter gene to allow non-invasive imaging. As an alternative to conventional vector detection techniques, we developed a specific genetic labeling system whereby an adenoviral vector incorporates a fusion between capsid protein IX and human metallothionein. Our study herein clearly demonstrates our ability to rescue viable adenoviral particles that display functional metallothionein (MT) as a component of their capsid surface. We demonstrate the feasibility of 99mTc binding in vitro to the pIX-MT fusion on the capsid of adenovirus virions using a simple transchelation reaction. SPECT imaging of a mouse after administration of a 99mTc-radiolabeled virus showed clear localization of radioactivity to the liver. This result strongly supports imaging using pIX-MT, visualizing the normal biodistribution of Ad primarily to the liver upon injection into mice. The ability we have developed to view real-time biodistribution in their physiological milieu represents a significant tool to study adenovirus biology in vivo

    Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release

    Get PDF
    Micelles are colloidal particles with a size around 5–100Β nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be improved in different ways. Targeting ligands can be attached to the micelles which specifically recognize and bind to receptors overexpressed in tumor cells, and chelation or incorporation of imaging moieties enables tracking micelles in vivo for biodistribution studies. Moreover, pH-, thermo-, ultrasound-, or light-sensitive block copolymers allow for controlled micelle dissociation and triggered drug release. The combination of these approaches will further improve specificity and efficacy of micelle-based drug delivery and brings the development of a β€˜magic bullet’ a major step forward
    • …
    corecore