506 research outputs found

    Evaluation of the Importance of Time-Frequency Contributions to Speech Intelligibility in Noise

    Get PDF
    Recent studies on binary masking techniques make the assumption that each time-frequency (T-F) unit contributes an equal amount to the overall intelligibility of speech. The present study demonstrated that the importance of each T-F unit to speech intelligibility varies in accordance with speech content. Specifically, T-F units are categorized into two classes, speech-present T-F units and speech-absent T-F units. Results indicate that the importance of each speech-present T-F unit to speech intelligibility is highly related to the loudness of its target component, while the importance of each speech-absent T-F unit varies according to the loudness of its masker component. Two types of mask errors are also considered, which include miss and false alarm errors. Consistent with previous work, false alarm errors are shown to be more harmful to speech intelligibility than miss errors when the mixture signal-to-noise ratio (SNR) is below 0 dB. However, the relative importance between the two types of error is conditioned on the SNR level of the input speech signal. Based on these observations, a mask-based objective measure, the loudness weighted hit-false, is proposed for predicting speech intelligibility. The proposed objective measure shows significantly higher correlation with intelligibility compared to two existing mask-based objective measures

    A Modular Millifluidic Platform for the Synthesis of Iron Oxide Nanoparticles with Control over Dissolved Gas and Flow Configuration

    Get PDF
    Gas–liquid reactions are poorly explored in the context of nanomaterials synthesis, despite evidence of significant effects of dissolved gas on nanoparticle properties. This applies to the aqueous synthesis of iron oxide nanoparticles, where gaseous reactants can influence reaction rate, particle size and crystal structure. Conventional batch reactors offer poor control of gas–liquid mass transfer due to lack of control on the gas–liquid interface and are often unsafe when used at high pressure. This work describes the design of a modular flow platform for the water-based synthesis of iron oxide nanoparticles through the oxidative hydrolysis of Fe2+ salts, targeting magnetic hyperthermia applications. Four different reactor systems were designed through the assembly of two modular units, allowing control over the type of gas dissolved in the solution, as well as the flow pattern within the reactor (single-phase and liquid–liquid two-phase flow). The two modular units consisted of a coiled millireactor and a tube-in-tube gas–liquid contactor. The straightforward pressurization of the system allows control over the concentration of gas dissolved in the reactive solution and the ability to operate the reactor at a temperature above the solvent boiling point. The variables controlled in the flow system (temperature, flow pattern and dissolved gaseous reactants) allowed full conversion of the iron precursor to magnetite/maghemite nanocrystals in just 3 min, as compared to several hours normally employed in batch. The single-phase configuration of the flow platform allowed the synthesis of particles with sizes between 26.5 nm (in the presence of carbon monoxide) and 34 nm. On the other hand, the liquid–liquid two-phase flow reactor showed possible evidence of interfacial absorption, leading to particles with different morphology compared to their batch counterpart. When exposed to an alternating magnetic field, the particles produced by the four flow systems showed ILP (intrinsic loss parameter) values between 1.2 and 2.7 nHm2/kg. Scale up by a factor of 5 of one of the configurations was also demonstrated. The scaled-up system led to the synthesis of nanoparticles of equivalent quality to those produced with the small-scale reactor system. The equivalence between the two systems is supported by a simple analysis of the transport phenomena in the small and large-scale setup

    A stochastic model for the evolution of the web allowing link deletion

    Get PDF
    Recently several authors have proposed stochastic evolutionary models for the growth of the web graph and other networks that give rise to power-law distributions. These models are based on the notion of preferential attachment leading to the ``rich get richer'' phenomenon. We present a generalisation of the basic model by allowing deletion of individual links and show that it also gives rise to a power-law distribution. We derive the mean-field equations for this stochastic model and show that by examining a snapshot of the distribution at the steady state of the model, we are able to tell whether any link deletion has taken place and estimate the link deletion probability. Our model enables us to gain some insight into the distribution of inlinks in the web graph, in particular it suggests a power-law exponent of approximately 2.15 rather than the widely published exponent of 2.1

    The Expanding Mycovirome of Aspergilli

    Get PDF
    © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Mycoviruses are viruses that infect fungi and are widespread across all major fungal taxa, exhibiting great biological diversity. Since their discovery in the 1960s, researchers have observed a myriad of fungal phenotypes altered due to mycoviral infection. In this review, we examine the nuanced world of mycoviruses in the context of the medically and agriculturally important fungal genus, Aspergillus. The advent of RNA sequencing has revealed a previous underestimate of viral prevalence in fungi, in particular linear single-stranded RNA viruses, and here we outline the diverse viral families known to date that contain mycoviruses infecting Aspergillus. Furthermore, we describe these novel mycoviruses, highlighting those with peculiar genome structures, such as a split RNA dependent RNA polymerase gene. Next, we delineate notable mycovirus-mediated phenotypes in Aspergillus, in particular reporting on observations of mycoviruses that affect their fungal host’s virulence and explore how this may relate to virus-mediated decreased stress tolerance. Furthermore, mycovirus effects on microbial competition and antifungal resistance are discussed. The factors that influence the manifestation of these phenotypes, such as temperature, fungal life stage, and infection with multiple viruses, among others, are also evaluated. In addition, we attempt to elucidate the molecular mechanisms that underpin these phenotypes, examining how mycoviruses can be targets, triggers, and even suppressors of RNA silencing and how this can affect fungal gene expression and phenotypes. Finally, we highlight the potential therapeutic applications of mycoviruses and how, in an approach analogous to bacteriophage therapy, their ability to produce hypovirulence in Aspergillus might be used to attenuate invasive aspergillosis infections in humans.Peer reviewe

    Comparing Aspects Of The Process Quality In Six European Early Childhood Educational Settings

    Get PDF
    The European project ‘Early Change’ (http://earlychange.teithe.gr) attempts to evaluate the quality of early childhood education (ECE) environments of six European countries, Greece, Portugal, Finland, Denmark, Cyprus and Romania. The purpose of this paper is to compare the level of two dimensions of the process quality of these environments a) Space & Furnishings, and b) Personal Care Routines. Theorists, practitioners and researchers agree that in order to provide qualitative education to young children, one of the basic needs of all children must be met; that need is the protection of their health and their safety. A high quality early childhood education program must contain a safe and stimulating environment for the child (Lindsey, 1998). Such an environment includes indoor space, outdoor space, furniture, and room arrangement, and it is considered an integral part of a high quality early childhood program. 117 early educators from the six participating countries attended the training seminars about the evaluation of ECE quality using the Early Childhood Environmental Rating Scale-R (ECERS-R). The trained educators evaluated the 8 indicators of the subscale ‘space & furnishings’ and the six indicators of the subscale ‘personal care routines’ in approximately 600 early childhood classrooms from six European countries. The results of this study highlight the similarities and differences concerning the specific dimensions of the process quality of ECE environments in six European countries, and reflect the diversity of ECE environment across these countries. The findings of this study may provide a valuable insight to researchers and educational policy makers for an enhanced understanding of the cultural diversities and the strengthening of the common values and targets of the European Union

    The relationship between students’ engagement and the development of Transactive Memory Systems in MUVE: An experience report

    Get PDF
    Student engagement is a very important topic in higher education hence, it drew a lot of research interest over the years. The use of educational Multi-User Virtual Environments (MUVEs) that provide synchronous interaction, dynamic, interactive and social learning experiences have the potential to increase student engagement and contribute to their learning experience. Due to increased social and cognitive presence, the use of such environments can result in greater student engagement when compared to traditional asynchronous learning environments. In this work, we hypothesized that students’ engagement in collaborative learning activities will increase if Transactive Memory System (TMS) constructs are present. Thus, we employed the theory of TMS that emphasizes the importance of Specialization, Coordination and Credibility between members in a team. The results show that there is a significant correlation between the development of TMS and students’ engagement. In addition, further quantitative and observation analysis reveals some interesting facts about students’ engagement with respect to their collaboration in group activities

    A universal two-way approach for estimating unknown frequencies for unknown number of sinusoids in a signal based on eigenspace analysis of Hankel matrix

    Get PDF
    YesWe develop a novel approach to estimate the n unknown constituent frequencies of a noiseless signal that comprises of unknown number, n, of sinusoids of unknown phases and unknown amplitudes. The new two way approach uses two constraints to accurately estimate the unknown frequencies of the sinusoidal components in a signal. The new approach serves as a verification test for the estimated unknown frequencies through the estimated count of the unknown number of frequencies. The Hankel matrix, of the time domain samples of the signal, is used as a basis for further analysis in the Pisarenko harmonic decomposition. The new constraints, the Existence Factor (EF) and the Component Factor (CF), have been introduced in the methodology based on the relationships between the components of the sinusoidal signal and the eigenspace of the Hankel matrix. The performance of the developed approach has been tested to correctly estimate any number of frequencies within a signal with or without a fixed unknown bias. The method has also been tested to accurately estimate the very closely spaced low frequencies.Innovate U

    Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry

    Get PDF
    Co-precipitation is by far the most common synthesis for magnetic iron oxide nanoparticles (IONPs), as cheap and environmentally friendly precursors and simple experimental procedures facilitate IONP production in many labs. Optimising co-precipitation syntheses remains challenging however, as particle formation mechanisms are not well understood. This is partly due to the rapid particle formation (within seconds) providing insufficient time to characterise initial precipitates. To overcome this limitation, a flow chemistry approach has been developed using steady-state operation to “freeze” transient reaction states locally. This allowed for the first time a comprehensive analysis of the early stages of co-precipitation syntheses via in-situ Small Angle X-ray Scattering and in-situ synchrotron X-Ray Diffraction. These studies revealed that after mixing the ferrous/ferric chloride precursor with the NaOH base solution, the most magnetic iron oxide phase forms within 5 s, the particle size changes only marginally afterwards, and co-precipitation and agglomeration occur simultaneously. As these agglomerates were too large to achieve colloidal stability via subsequent stabiliser addition, co-precipitated IONPs had to be de-agglomerated. This was achieved by adding the appropriate quantity of a citric acid solution which yielded within minutes colloidally stable IONP solutions around a neutral pH value. The new insights into the particle formation and the novel stabilisation procedure (not requiring any ultra-sonication or washing step) allowed to design a multistage flow reactor to synthesise and stabilise IONPs continuously with a residence time of less than 5 min. This reactor was robust against fouling and produced stable IONP solutions (of ~1.5 mg particles per ml) reproducibly via fast mixing ( 500 ml/h) for low materials cost

    ICTV virus taxonomy profile: Yadokariviridae 2023.

    Get PDF
    The family Yadokariviridae, with the genera Alphayadokarivirus and Betayadokarivirus, includes capsidless non-segmented positive-sense (+) RNA viruses that hijack capsids from phylogenetically distant double-stranded RNA viruses. Yadokarivirids likely replicate inside the hijacked heterocapsids using their own RNA-directed RNA polymerase, mimicking dsRNA viruses despite their phylogenetic placement in a (+) RNA virus lineage. Yadokarivirids can have negative or positive impacts on their host fungi, through interactions with the capsid donor dsRNA viruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Yadokariviridae, which is available at ictv.global/report/yadokariviridae

    A novel heptasegmented positive-sense single-stranded RNA virus from the phytopathogenic fungus colletotrichum fructicola

    Get PDF
    In this study, a novel positive-sense single-stranded RNA (+ssRNA) mycovirus, tentatively named Colletotrichum fructicola RNA virus 1 (CfRV1), was identified in the phytopathogenic fungus Colletotrichum fructicola. CfRV1 has seven genomic components, encoding seven proteins from open reading frames (ORFs) flanked by highly conserved untranslated regions (UTRs). Proteins encoded by ORFs 1, 2, 3, 5, and 6 are more similar to the putative RNA-dependent RNA polymerase (RdRp), hypothetical protein (P2), methyltransferase, and two hypothetical proteins of Hadaka virus 1 (HadV1), a capsidless 10- or 11-segmented +ssRNA virus, while proteins encoded by ORFs 4 and 7 showed no detectable similarity to any known proteins. Notably, proteins encoded by ORFs 1 to 3 also share considerably high similarity with the corresponding proteins of polymycoviruses. Phylogenetic analysis conducted based on the amino acid sequence of CfRV1 RdRp and related viruses placed CfRV1 and HadV1 together in the same clade, close to polymycoviruses and astroviruses. CfRV1-infected C. fructicola strains demonstrate a moderately attenuated growth rate and virulence compared to uninfected isolates. CfRV1 is capsidless and potentially encapsulated in vesicles inside fungal cells, as revealed by transmission electron microscopy. CfRV1 and HadV1 are +ssRNA mycoviruses closely related to polymycoviruses and astroviruses, represent a new linkage between +ssRNA viruses and the intermediate double-stranded RNA (dsRNA) polymycoviruses, and expand our understanding of virus diversity, taxonomy, evolution, and biological traits. IMPORTANCE A scenario proposing that dsRNA viruses evolved from +ssRNA viruses is still considered controversial due to intergroup knowledge gaps in virus diversity. Recently, polymycoviruses and hadakaviruses were found as intermediate dsRNA and +ssRNA stages, respectively, between +ssRNA and dsRNA viruses. Here, we identified a novel +ssRNA mycovirus, Colletotrichum fructicola RNA virus 1 (CfRV1), isolated from Colletotrichum fructicola in China. CfRV1 is phylogenetically related to the 10- or 11-segmented Hadaka virus 1 (HadV1) but consists of only seven genomic segments encoding two novel proteins. CfRV1 is naked and may be encapsulated in vesicles inside fungal cells, representing a potential novel lifestyle for multisegmented RNA viruses. CfRV1 and HadV1 are intermediate +ssRNA mycoviruses in the linkage between +ssRNA viruses and the intermediate dsRNA polymycoviruses and expand our understanding of virus diversity, taxonomy, and evolution
    • 

    corecore