69 research outputs found

    Optical vault: reconfigurable bottle beam by conically refracted light

    Full text link
    We employ conical refraction of light in a biaxial crystal to create an optical bottle for trapping and manipulation of particles. We show that by just varying the polarization of the input light the bottle can be opened and closed at will. We experimentally demonstrate stable photophoretic trapping and controllable loading and unloading of light absorbing particles in the trap.Comment: 4 pages, 5 figure

    Wave-vector and polarization dependence of conical refraction

    Full text link
    We experimentally address the wave-vector and polarization dependence of the internal conical refraction phenomenon by demonstrating that an input light beam of elliptical transverse profile refracts into two beams after passing along one of the optic axes of a biaxial crystal, i.e. it exhibits double refraction instead of refracting conically. Such double refraction is investigated by the independent rotation of a linear polarizer and a cylindrical lens. Expressions to describe the position and the intensity pattern of the refracted beams are presented and applied to predict the intensity pattern for an axicon beam propagating along the optic axis of a biaxial crystal

    Polarization tailored novel vector beams based on conical refraction

    Full text link
    Coherent vector beams with involved states of polarization (SOP) are widespread in the literature, having applications in laser processing, super-resolution imaging and particle trapping. We report novel vector beams obtained by transforming a Gaussian beam passing through a biaxial crystal, by means of the conical refraction phenomenon. We analyze both experimentally and theoretically the SOP of the different vector beams generated and demonstrate that the SOP of the input beam can be used to control both the shape and the SOP of the transformed beam. We also identify polarization singularities of such beams for the first time and demonstrate their control by the SOP of an input beam

    Quantum state storage and processing for polarization qubits in an inhomogeneously broadened \Lambda-type three-level medium

    Get PDF
    We address the propagation of a single photon pulse with two polarization components, i.e., a polarization qubit, in an inhomogeneously broadened "phaseonium" \Lambda-type three-level medium. We combine some of the non-trivial propagation effects characteristic for this kind of coherently prepared systems and the controlled reversible inhomogeneous broadening technique to propose several quantum information processing applications, such as a protocol for polarization qubit filtering and sieving as well as a tunable polarization beam splitter. Moreover, we show that, by imposing a spatial variation of the atomic coherence phase, an effcient quantum memory for the incident polarization qubit can be also implemented in \Lambda-type three-level systems.Comment: 9 pages, 4 figure

    Conical refraction mode of an optical resonator

    Get PDF
    The fundamental mode of a conical refraction resonator, i.e., an optical cavity where light experiences conical refraction (CR) from a biaxial crystal, is experimentally demonstrated in the plano-concave cavity configuration. We have discovered that the fundamental CR mode is characterized by the polarization and intensity structures of CR beams between the plane mirror and CR crystal, and it resembles the fundamental Gaussian mode with homogeneous polarization between the crystal and concave mirror. We theoretically explained this fundamental CR mode using the dual cone model and symmetry of the CR phenomenon and confirmed this explanation by numerical simulations

    Compact 0.7 mJ/11 ns eye-safe erbium laser

    Get PDF
    We report on the development of a compact diode-end-pumped eye-safe (similar to 1.54 mu m) passively-cooled Er, Yb:glass laser. The design of this laser is facilitated by the use of a double-pass pumping scheme and a special ZrO2 diffuse reflector for a uniform pump distribution. In the free-running mode, this laser generates 8.2 mJ/3 ms pulses with a slope efficiency of 15%. Passive Q-switching is provided by saturable absorbers made of transparent glass-ceramics containing Co2+:gamma-Ga2O3 or Co2+:MgAl2O4 nanocrystals with a spinel structure. In the latter case, 0.7 mJ/10.5 ns pulses are generated corresponding to >60 kW peak power and good beam quality (M-2 = 1.4). The designed laser is suitable for portable range-finders
    corecore