1,144 research outputs found

    Meiotic recombination proteins localize to linear elements in Schizosaccharomyces pombe

    Get PDF
    Peer reviewedPostprin

    Magnetic susceptibility of the frustrated spinels ZnCr2O4, MgCr2O4 and CdCr2O4

    Full text link
    We analyzed the magnetic susceptibilities of several Cr spinels using two recent models for the geometrically frustrated pyrochlore lattice, the Quantum Tetrahedral Mean Field model and a Generalized Constant Coupling model. Both models can describe the experimental data for ACr2 O4 (with A = Zn, Mg, and Cd) satisfactorily, with the former yielding a somewhat better agreement with experiment for A = Zn, Mg. The obtained exchange constants for nearest and next-nearest neighbors are discussed.Comment: 4 pages, 1 figure, 1 table, conferenc

    Large and Small Polaron Excitations in La2/3(Sr/Ca)1/3MnO3 Films

    Get PDF
    We present detailed optical measurements of the mid-infrared (MIR) excitations in thin films of La2/3Sr1/3MnO3 (LSMO) and La2/3Ca1/3MnO3 (LCMO) across the magnetic transition. The shape of the excitation at about 0.2 eV in both samples is analyzed in terms of polaron models. We propose to identify the MIR resonance in LSMO as the excitation of large polarons and that in LCMO as a small polaron excitation. A scaling behavior for the low-energy side of the polaronic MIR resonance in LSMO is established

    Tuning orbital-selective correlation effects in superconducting Rb0.75_{0.75}Fe1.6_{1.6}Se2z_{2-z}Sz_z

    Full text link
    We report on terahertz time-domain spectroscopy on superconducting and metallic iron chalcogenides Rb0.75_{0.75}Fe1.6_{1.6}Se2z_{2-z}Sz_z. The superconducting transition is reduced from Tc=T_c= 32 K (z=0z=0) to 22 K (z=1.0z=1.0), and finally suppressed (z=1.4z=1.4) by isoelectronic substitution of Se with S. Dielectric constant and optical conductivity exhibit a metal-to-insulator transition associated with an orbital-selective Mott phase. This orbital-selective Mott transition appears at higher temperature TmetT_{met} with increasing sulfur content, identifying sulfur substitution as an efficient parameter to tune orbital-dependent correlation effects in iron-chalcogenide superconductors. The reduced correlations of the dxyd_{xy} charge carriers can account for the suppression of the superconductivity and the pseudogap-like feature between TcT_c and TmetT_{met} that was observed for z=0z=0.Comment: 6 pages, 4 figure

    Multiferroicity and colossal magneto-capacitance in Cr-thiospinels

    Full text link
    The sulfur based Cr-spinels RCr2S4 with R = Cd and Hg exhibit the coexistence of ferromagnetic and ferroelectric properties together with a pronounced magnetocapacitive coupling. While in CdCr2S4 purely ferromagnetic order is established, in HgCr2S4 a bond-frustrated magnetic ground state is realized, which, however, easily can be driven towards a ferromagnetic configuration in weak magnetic fields. This paper shall review our recent investigation for both compounds. Besides the characterization of the magnetic properties, the complex dielectric permittivity was studied by means of broadband dielectric spectroscopy as well as measurements of polarization hysteresis and pyro-currents. The observed colossal magneto-capacitive effect at the magnetic transition seems to be driven by an enormous variation of the relaxation dynamics.Comment: 10 pages, 11 figure

    Study of one-dimensional nature of (Sr,Ba)_2Cu(PO_4)_2 and BaCuP_2O_7 via 31P NMR

    Full text link
    The magnetic behavior of the low-dimensional phosphates (Sr,Ba)_2 Cu(PO_4)_2 and BaCuP_2O_7 was investigated by means of magnetic susceptibility and ^{31}P nuclear magnetic resonance (NMR) measurements. We present here the NMR shift K(T), the spin-lattice 1/T_1 and spin-spin 1/T_2 relaxation-rate data over a wide temperature range 0.02 K < T < 300 K. The T-dependence of the NMR K(T) is well described by the S=1/2 Heisenberg antiferromagnetic chain model with an intrachain exchange of J/k_B = 165 K, 151 K, and 108 K in Sr_2Cu(PO_4)_2, Ba_2Cu(PO_4)_2, and BaCuP_2O_7, respectively. Our measurements suggest the presence of magnetic ordering at 0.8 K in BaCuP_2O_7 (J/k_B = 108 K). For all the samples, we find that 1/T_1 is nearly T-independent at low-temperatures (1 K < T < 10 K), which is theoretically expected for 1D chains when relaxation is dominated by fluctuations of the staggered susceptibility. At high temperatures, 1/T_1 varies nearly linearly with temperature

    Multiferroic behavior in CdCr2X4 (X = S, Se)

    Full text link
    The recently discovered multiferroic material CdCr2S4 shows a coexistence of ferromagnetism and relaxor ferroelectricity together with a colossal magnetocapacitive effect. The complex dielectric permittivity of this compound and of the structurally related CdCr2Se4 was studied by means of broadband dielectric spectroscopy using different electrode materials. The observed magnetocapacitive coupling at the magnetic transition is driven by enormous changes of the relaxation dynamics induced by the development of magnetic order

    Colossal magnetocapacitance and colossal magnetoresistance in HgCr2S4

    Full text link
    We present a detailed study of the dielectric and charge transport properties of the antiferromagnetic cubic spinel HgCr2S4. Similar to the findings in ferromagnetic CdCr2S4, the dielectric constant of HgCr2S4 becomes strongly enhanced in the region below 60 - 80 K, which can be ascribed to polar relaxational dynamics triggered by the onset of ferromagnetic correlations. In addition, the observation of polarization hysteresis curves indicates the development of ferroelectric order below about 70 K. Moreover, our investigations in external magnetic fields up to 5 T reveal the simultaneous occurrence of magnetocapacitance and magnetoresistance of truly colossal magnitudes in this material.Comment: 4 pages, 4 figure

    Spin-phonon coupling in antiferromagnetic chromium spinels

    Get PDF
    The temperature dependence of eigenfrequencies and intensities of the IR active modes has been investigated for the antiferromagnetic chromium spinel compounds CdCr2O4, ZnCr2O4, ZnCr2S4, ZnCr2Se4, and HgCr2S4 by IR spectroscopy for temperatures from 5 K to 300 K. At the transition into the magnetically ordered phases, and driven by spin-phonon coupling, most compounds reveal significant splittings of the phonon modes. This is true for geometrically frustrated CdCr2O4, and ZnCr2O4, for bond frustrated ZnCr2S4 and for ZnCr2Se4, which also is bond frustrated, but dominated by ferromagnetic exchange. The pattern of splitting is different for the different compounds and crucially depends on the nature of frustration and of the resulting spin order. HgCr2S4, which is almost ferromagnetic, exhibits no splitting of the eigenfrequencies, but shows significant shifts due to ferromagnetic spin fluctuations.Comment: 15 pages, 6 figure
    corecore