3 research outputs found

    Mechanical assessment of two hybrid plate designs for pancarpal canine arthrodesis under cyclic loading

    Get PDF
    Pancarpal canine arthrodesis (PCA) sets immobilization of all three carpal joints via dorsal plating to result in bony fusion. Whereas the first version of the plate uses a round hole (RH) for the radiocarpal (RC) screw region, its modification into an oval hole (OH) in a later version improves versatility in surgical application. The aim of this study was to mechanically investigate the fatigue life of the PCA plate types implementing these two features–PCA-RH and PCA-OH. Ten PCA-RH and 20 PCA-OH stainless steel (316LVM) plates were assigned to three study groups (n = 10). All plates were pre-bent at 20° and fixed to a canine forelimb model with simulated radius, RC bone and third metacarpal bone. The OH plates were fixed with an RC screw inserted either most proximal (OH-P) or most distal (OH-D). All specimens were cyclically tested at 8 Hz under 320 N loading until failure. Fatigue life outcome measures were cycles to failure and failure mode. Cycles to failure were higher for RH plate fixation (695,264 ± 344,023) versus both OH-P (447,900 ± 176,208) and OH-D (391,822 ± 165,116) plate configurations, being significantly different between RH and OH-D, p = 0.03. No significant difference was detected between OH-P and OH-D configurations, p = 0.09. Despite potential surgical advantages, the shorter fatigue life of the PCA-OH plate design may mitigate its benefits compared to the plate design with a round radiocarpal screw hole. Moreover, the failure risk of plates with an oval hole is increased regardless from the screw position in this hole. Based on these findings, the PCA plate with the current oval radiocarpal screw hole configuration cannot be recommended for clinical use

    Traumatic anterior cruciate ligament tear and its implications on meniscal degradation: A preliminary novel lapine osteoarthritis model

    No full text
    Background: Injury patterns of the meniscus following impact trauma resulting in anterior cruciate ligament (ACL) rupture are not well understood. This study explored the spatial and temporal distribution of meniscal tears in a novel in vivo lapine model. Methods: Skeletally mature Flemish Giant rabbits were subjected to either tibiofemoral impaction resulting in ACL rupture or surgical ACL transection. Meniscal damage was assessed acutely and after 12 wk for traumatically torn, and after 12 wk in ACL transected animals. Morphological grading was assessed using previously established criteria, and descriptions of meniscal damage were diagnosed by a Board certified orthopedist. Histological assessment was also made on 12 wk traumatically torn and ACL transected animals using Fast-Green/Safranin-O staining. Results: Traumatic ACL rupture resulted in acute tears predominately in the lateral menisci. Animals subjected to both surgical transection and traumatic ACL rupture experienced degradation of the lateral and medial menisci 12 wk after injury. However, traumatic ACL rupture resulted in acute lateral damage and chronic degradation of the menisci, as well as more severe degradation of the menisci 12 wk after injury. Conclusions: This study showed that unconstrained high-intensity impacts on the tibiofemoral joint lead to meniscal damage in conjunction with ACL ruptures. Both acute and chronic changes to the menisci following traumatic impaction were observed. This research has implications for the future use of lapine models for osteoarthritis, as it incorporates traumatic loading as a more realistic mode contributing to the progression of osteoarthritis (OA) compared to surgically transected models. © 2010 Elsevier Inc. All rights reserved

    Traumatic anterior cruciate ligament tear and its implications on meniscal degradation: A preliminary novel lapine osteoarthritis model

    No full text
    Background: Injury patterns of the meniscus following impact trauma resulting in anterior cruciate ligament (ACL) rupture are not well understood. This study explored the spatial and temporal distribution of meniscal tears in a novel in vivo lapine model. Methods: Skeletally mature Flemish Giant rabbits were subjected to either tibiofemoral impaction resulting in ACL rupture or surgical ACL transection. Meniscal damage was assessed acutely and after 12 wk for traumatically torn, and after 12 wk in ACL transected animals. Morphological grading was assessed using previously established criteria, and descriptions of meniscal damage were diagnosed by a Board certified orthopedist. Histological assessment was also made on 12 wk traumatically torn and ACL transected animals using Fast-Green/Safranin-O staining. Results: Traumatic ACL rupture resulted in acute tears predominately in the lateral menisci. Animals subjected to both surgical transection and traumatic ACL rupture experienced degradation of the lateral and medial menisci 12 wk after injury. However, traumatic ACL rupture resulted in acute lateral damage and chronic degradation of the menisci, as well as more severe degradation of the menisci 12 wk after injury. Conclusions: This study showed that unconstrained high-intensity impacts on the tibiofemoral joint lead to meniscal damage in conjunction with ACL ruptures. Both acute and chronic changes to the menisci following traumatic impaction were observed. This research has implications for the future use of lapine models for osteoarthritis, as it incorporates traumatic loading as a more realistic mode contributing to the progression of osteoarthritis (OA) compared to surgically transected models. © 2010 Elsevier Inc. All rights reserved
    corecore