6 research outputs found

    Hyundai Avante LPi hybrid level 1 testing report.

    Get PDF
    In collaboration with the Korea Automotive Technology Institute (KATECH), the Korean market only Hyundai Avante LPi Hybrid was purchased and imported to ANL's Advanced Powertrain Research Facility for vehicle-level testing. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. To assess the impacts of more aggressive driving, the LA92 cycle and a UDDS scaled by a factor 1.2x cycles were also included in the testing plan. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed. The following sections will seek to explain some of the basic operating characteristics of the Avante LPi Hybrid and provide insight into unique features of its operation and design. Figure 1 shows the test vehicle in Argonne's soak room

    Model year 2010 Honda insight level-1 testing report.

    Get PDF
    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Honda Insight was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were tested. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D3). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation when available. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Insight and provide insight into unique features of its operation and design

    Model year 2010 Ford Fusion Level-1 testing report.

    No full text
    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Ford Fusion was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Fusion and provide insight into unique features of its operation and design

    Model year 2010 (Gen 3) Toyota Prius level 1 testing report.

    No full text
    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Toyota Prius (Generation 3) was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of 'Level 1' testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network connection, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D{sup 3}). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from the exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and minimal CAN bus data such as engine speed and pedal position. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Prius over standard regulatory cycles
    corecore