4 research outputs found

    Digital Behavior Change Interventions for the Prevention and Management of Type 2 Diabetes: Systematic Market Analysis

    Full text link
    Background Advancements in technology offer new opportunities for the prevention and management of type 2 diabetes. Venture capital companies have been investing in digital diabetes companies that offer digital behavior change interventions (DBCIs). However, little is known about the scientific evidence underpinning such interventions or the degree to which these interventions leverage novel technology-driven automated developments such as conversational agents (CAs) or just-in-time adaptive intervention (JITAI) approaches. Objective Our objectives were to identify the top-funded companies offering DBCIs for type 2 diabetes management and prevention, review the level of scientific evidence underpinning the DBCIs, identify which DBCIs are recognized as evidence-based programs by quality assurance authorities, and examine the degree to which these DBCIs include novel automated approaches such as CAs and JITAI mechanisms. Methods A systematic search was conducted using 2 venture capital databases (Crunchbase Pro and Pitchbook) to identify the top-funded companies offering interventions for type 2 diabetes prevention and management. Scientific publications relating to the identified DBCIs were identified via PubMed, Google Scholar, and the DBCIs’ websites, and data regarding intervention effectiveness were extracted. The Diabetes Prevention Recognition Program (DPRP) of the Center for Disease Control and Prevention in the United States was used to identify the recognition status. The DBCIs’ publications, websites, and mobile apps were reviewed with regard to the intervention characteristics. Results The 16 top-funded companies offering DBCIs for type 2 diabetes received a total funding of US $2.4 billion as of June 15, 2021. Only 4 out of the 50 identified publications associated with these DBCIs were fully powered randomized controlled trials (RCTs). Further, 1 of those 4 RCTs showed a significant difference in glycated hemoglobin A1c (HbA1c) outcomes between the intervention and control groups. However, all the studies reported HbA1c improvements ranging from 0.2% to 1.9% over the course of 12 months. In addition, 6 interventions were fully recognized by the DPRP to deliver evidence-based programs, and 2 interventions had a pending recognition status. Health professionals were included in the majority of DBCIs (13/16, 81%,), whereas only 10% (1/10) of accessible apps involved a CA as part of the intervention delivery. Self-reports represented most of the data sources (74/119, 62%) that could be used to tailor JITAIs. Conclusions Our findings suggest that the level of funding received by companies offering DBCIs for type 2 diabetes prevention and management does not coincide with the level of evidence on the intervention effectiveness. There is considerable variation in the level of evidence underpinning the different DBCIs and an overall need for more rigorous effectiveness trials and transparent reporting by quality assurance authorities. Currently, very few DBCIs use automated approaches such as CAs and JITAIs, limiting the scalability and reach of these solutions

    Hybrid Ubiquitous Coaching With a Novel Combination of Mobile and Holographic Conversational Agents Targeting Adherence to Home Exercises: Four Design and Evaluation Studies

    No full text
    Background: Effective treatments for various conditions such as obesity, cardiac heart diseases, or low back pain require not only personal on-site coaching sessions by health care experts but also a significant amount of home exercises. However, nonadherence to home exercises is still a serious problem as it leads to increased costs due to prolonged treatments. Objective: To improve adherence to home exercises, we propose, implement, and assess the novel coaching concept of hybrid ubiquitous coaching (HUC). In HUC, health care experts are complemented by a conversational agent (CA) that delivers psychoeducation and personalized motivational messages via a smartphone, as well as real-time exercise support, monitoring, and feedback in a hands-free augmented reality environment. Methods: We applied HUC to the field of physiotherapy and conducted 4 design-and-evaluate loops with an interdisciplinary team to assess how HUC is perceived by patients and physiotherapists and whether HUC leads to treatment adherence. A first version of HUC was evaluated by 35 physiotherapy patients in a lab setting to identify patients’ perceptions of HUC. In addition, 11 physiotherapists were interviewed about HUC and assessed whether the CA could help them build up a working alliance with their patients. A second version was then tested by 15 patients in a within-subject experiment to identify the ability of HUC to address adherence and to build a working alliance between the patient and the CA. Finally, a 4-week n-of-1 trial was conducted with 1 patient to show one experience with HUC in depth and thereby potentially reveal real-world benefits and challenges. Results: Patients perceived HUC to be useful, easy to use, and enjoyable, preferred it to state-of-the-art approaches, and expressed their intentions to use it. Moreover, patients built a working alliance with the CA. Physiotherapists saw a relative advantage of HUC compared to current approaches but initially did not see the potential in terms of a working alliance, which changed after seeing the results of HUC in the field. Qualitative feedback from patients indicated that they enjoyed doing the exercise with an augmented reality–based CA and understood better how to do the exercise correctly with HUC. Moreover, physiotherapists highlighted that HUC would be helpful to use in the therapy process. The longitudinal field study resulted in an adherence rate of 92% (11/12 sessions; 330/360 repetitions; 33/36 sets) and a substantial increase in exercise accuracy during the 4 weeks. Conclusions: The overall positive assessments from both patients and health care experts suggest that HUC is a promising tool to be applied in various disorders with a relevant set of home exercises. Future research, however, must implement a variety of exercises and test HUC with patients suffering from different disorders.ISSN:1438-887

    Are conversational agents used at scale by companies offering digital health services for the management and prevention of diabetes?

    No full text
    Successful interventions to prevent and manage type 2 diabetes rely on long-term, day-to-day decisions which take place outside of clinical settings. In this context, human resources are difficult to scale up, and leveraging Conversational agents (CAs) could be one way to scale up healthcare to tackle the emerging epidemic of type 2 diabetes. The objective of this paper is to assess the degree to which CAs are employed by top-funded digital health companies that target the prevention and management of type 2 diabetes. Companies were identified via two venture capital databases, i.e. Crunchbase Pro and Pitchbook. Two independent reviewers screened results and the final list of companies was validated and revised by three independent digital health experts. The companies’ digital services (usually mobile applications) were accessed and reviewed for the utilisation of CAs. To better understand the purpose of identified CAs, relevant publications were identified via PubMed, Google Scholar, ACM Digital Library and on the companies’ website. Nine out of 15 companies’ digital services were accessible to the authors and only in one case a CA was employed. The uptake of CAs by top- funded digital health companies targeting type-2 diabetes is still low

    Digital Behavior Change Interventions for the Prevention and Management of Type 2 Diabetes: Systematic Market Analysis

    No full text
    Background: Advancements in technology offer new opportunities for the prevention and management of type 2 diabetes. Venture capital companies have been investing in digital diabetes companies that offer digital behavior change interventions (DBCIs). However, little is known about the scientific evidence underpinning such interventions or the degree to which these interventions leverage novel technology-driven automated developments such as conversational agents (CAs) or just-in-time adaptive intervention (JITAI) approaches. Objective: Our objectives were to identify the top-funded companies offering DBCIs for type 2 diabetes management and prevention, review the level of scientific evidence underpinning the DBCIs, identify which DBCIs are recognized as evidence-based programs by quality assurance authorities, and examine the degree to which these DBCIs include novel automated approaches such as CAs and JITAI mechanisms. Methods: A systematic search was conducted using 2 venture capital databases (Crunchbase Pro and Pitchbook) to identify the top-funded companies offering interventions for type 2 diabetes prevention and management. Scientific publications relating to the identified DBCIs were identified via PubMed, Google Scholar, and the DBCIs’ websites, and data regarding intervention effectiveness were extracted. The Diabetes Prevention Recognition Program (DPRP) of the Center for Disease Control and Prevention in the United States was used to identify the recognition status. The DBCIs’ publications, websites, and mobile apps were reviewed with regard to the intervention characteristics. Results: The 16 top-funded companies offering DBCIs for type 2 diabetes received a total funding of US $2.4 billion as of June 15, 2021. Only 4 out of the 50 identified publications associated with these DBCIs were fully powered randomized controlled trials (RCTs). Further, 1 of those 4 RCTs showed a significant difference in glycated hemoglobin A1c (HbA1c) outcomes between the intervention and control groups. However, all the studies reported HbA1c improvements ranging from 0.2% to 1.9% over the course of 12 months. In addition, 6 interventions were fully recognized by the DPRP to deliver evidence-based programs, and 2 interventions had a pending recognition status. Health professionals were included in the majority of DBCIs (13/16, 81%,), whereas only 10% (1/10) of accessible apps involved a CA as part of the intervention delivery. Self-reports represented most of the data sources (74/119, 62%) that could be used to tailor JITAIs. Conclusions: Our findings suggest that the level of funding received by companies offering DBCIs for type 2 diabetes prevention and management does not coincide with the level of evidence on the intervention effectiveness. There is considerable variation in the level of evidence underpinning the different DBCIs and an overall need for more rigorous effectiveness trials and transparent reporting by quality assurance authorities. Currently, very few DBCIs use automated approaches such as CAs and JITAIs, limiting the scalability and reach of these solutions.ISSN:1438-887
    corecore