4 research outputs found

    Analysis of the Effects of Adaptive Ramp Metering on Measures of Efficiency with a Proposed Framework for Safety Evaluation

    Get PDF
    Adaptive ramp metering (ARM) is a widely popular intelligent transportation system (ITS) tool that boasts the ability to reduce congestion and streamline traffic flow during peak hour periods while maintaining a lower implementation cost than traditional methods such as freeway widening. This thesis explores the effectiveness of ARM implementation on an 18 mile segment of the Interstate 80 (I-80) corridor in the Bay Area residing in northern California. Smaller segments of this particular segment were analyzed to determine the effective length of ARM on efficiency at various lengths originating from a known bottleneck location. Efficiency values were also compared against a control segment of the Interstate 280 (I-280) in San Jose to provide a test site experiencing similar traffic congestion but without any ARM implementation. An Empirical Bayes analysis was conducted to provide the foundation of a safety evaluation of the ramp metering implementation and determine a counterfactual estimate of expected collisions had ARM implementation not occurred. It was found that the installation of the ramp meters did allow for some marginal increases in efficiency but may not be entirely associated with ARM implementation due to a variety of external factors as well as showing inconsistent behavior between analyzed segments. Regarding safety, the predictive model estimates 32.8 collisions to occur along a 0.5 mile segment within a three-year timeframe if ARM were not installed, which implies substantial improvements in safety conditions. However additional efficiency and safety data within the “after” period may be necessary to provide a more robust and conclusive evaluation as the ARM system is still relatively new

    Evaluation of Coordinated Ramp Metering (CRM) Implemented By Caltrans

    Get PDF
    Coordinated ramp metering (CRM) is a critical component of smart freeway corridors that rely on real-time traffic data from ramps and freeway mainline to improve decision-making by the motorists and Traffic Management Center (TMC) personnel. CRM uses an algorithm that considers real-time traffic volumes on freeway mainline and ramps and then adjusts the metering rates on the ramps accordingly for optimal flow along the entire corridor. Improving capacity through smart corridors is less costly and easier to deploy than freeway widening due to high costs associated with right-of-way acquisition and construction. Nevertheless, conversion to smart corridors still represents a sizable investment for public agencies. However, in the U.S. there have been limited evaluations of smart corridors in general, and CRM in particular, based on real operational data. This project examined the recent Smart Corridor implementation on Interstate 80 (I-80) in the Bay Area and State Route 99 (SR-99, SR99) in Sacramento based on travel time reliability measures, efficiency measures, and before-and-after safety evaluation using the Empirical Bayes (EB) approach. As such, this evaluation represents the most complete before-and-after evaluation of such systems. The reliability measures include buffer index, planning time, and measures from the literature that account for both the skew and width of the travel time distribution. For efficiency, the study estimates the ratio of vehicle miles traveled vs. vehicle hour traveled. The research contextualizes before-and-after comparisons for efficiency and reliability measures through similar measures from another corridor (i.e., the control corridor of I-280 in District 4 and I-5 in District 3) from the same region, which did not have CRM implemented. The results show there has been an improvement in freeway operation based on efficiency data. Post-CRM implementation, travel time reliability measures do not show a similar improvement. The report also provides a counterfactual estimate of expected crashes in the post-implementation period, which can be compared with the actual number of crashes in the “after” period to evaluate effectiveness

    Exploiting a novel conformational switch to control innate immunity mediated by complement protein C3a

    No full text
    Complement C3a is an important protein in innate and adaptive immunity, but its specific roles in vivo remain uncertain because C3a degrades rapidly to form the C3a-desArg protein, which does not bind to the C3a receptor and is indistinguishable from C3a using antibodies. Here we develop the most potent, stable and highly selective small molecule modulators of C3a receptor, using a heterocyclic hinge to switch between agonist and antagonist ligand conformations. This enables characterization of C3 areceptor-selective pro- vs. anti-inflammatory actions in human mast cells and macrophages, and in rats. A C3a receptor-selective agonist induces acute rat paw inflammation by first degranulating mast cells before activating macrophages and neutrophils. An orally administered C3a receptor-selective antagonist inhibits mast cell degranulation, thereby blocking recruitment and activation of macrophages and neutrophils, expression of inflammatory mediators and inflammation in a rat paw edema model. These novel tools reveal the mechanism of C3a-induced inflammation and provide new insights to complement-based medicines

    International recommendations for plasma Epstein-Barr virus DNA measurement in nasopharyngeal carcinoma in resource-constrained settings: lessons from the COVID-19 pandemic

    No full text
    The effects of the COVID-19 pandemic continue to constrain health-care staff and resources worldwide, despite the availability of effective vaccines. Aerosol-generating procedures such as endoscopy, a common investigation tool for nasopharyngeal carcinoma, are recognised as a likely cause of SARS-CoV-2 spread in hospitals. Plasma Epstein-Barr virus (EBV) DNA is considered the most accurate biomarker for the routine management of nasopharyngeal carcinoma. A consensus statement on whether plasma EBV DNA can minimise the need for or replace aerosol-generating procedures, imaging methods, and face-to-face consultations in managing nasopharyngeal carcinoma is urgently needed amid the current pandemic and potentially for future highly contagious airborne diseases or natural disasters. We completed a modified Delphi consensus process of three rounds with 33 international experts in otorhinolaryngology or head and neck surgery, radiation oncology, medical oncology, and clinical oncology with vast experience in managing nasopharyngeal carcinoma, representing 51 international professional societies and national clinical trial groups. These consensus recommendations aim to enhance consistency in clinical practice, reduce ambiguity in delivering care, and offer advice for clinicians worldwide who work in endemic and non-endemic regions of nasopharyngeal carcinoma, in the context of COVID-19 and other airborne pandemics, and in future unexpected settings of severe resource constraints and insufficiency of personal protective equipment
    corecore