85 research outputs found

    Virally induced modulation of murine IgG antibody subclasses.

    Full text link
    The isotypic distribution of murine IgG was examined after infection with several viruses. The results indicate that when a hypergammaglobulinemia was induced by the infection, it was restricted to the IgG2a and, to a lesser extent, to the IgG2b subclasses. In addition, when mice were infected with some viruses concomitantly with the immunization with a soluble protein antigen, a modification in the isotypic distribution of antiprotein antibodies was observed, with a preferential production of IgG2a. These observations indicate that viral infections can actively influence the switch of Igs and selectively stimulate the production of the IgG2a subclass

    Genus- and species-specific identification of mycoplasmas by 16S rRNA amplification

    Get PDF
    Systematic computer alignment of mycoplasmal 16S rRNA sequences allowed the identification of variable regions with both genus- and species-specific sequences. Species-specific sequences of Mycoplasma collis were elucidated by asymmetric amplification and dideoxynucleotide sequencing of variable regions, using primers complementary to conserved regions of 16S rRNA. Primers selected for Mycoplasma pneumoniae, M. hominis, M. fermentans, Ureaplasma urealyticum, M. pulmonis, M. arthritidis, M. neurolyticum, M. muris, and M. collis proved to be species specific in the polymerase chain reaction. The genus-specific primers reacted with all mycoplasmal species investigated as well as with members of the genera Ureaplasma, Spiroplasma, and Acholeplasma. No cross-reaction was observed with members of the closely related genera Streptococcus, Lactobacillus, Bacillus, and Clostridium or with any other microorganism tested. On the basis of the high copy number of rRNA, a highly sensitive polymerase chain reaction assay was developed in which the nucleic acid content equivalent to a single organism could be detected

    Genetic polymorphisms and susceptibility to lung disease

    Get PDF
    Susceptibility to infection by bacterium such as Bacillus anthracis has a genetic basis in mice and may also have a genetic basis in humans. In the limited human cases of inhalation anthrax, studies suggest that not all individuals exposed to anthrax spores were infected, but rather, individuals with underlying lung disease, particularly asthma, sarcoidosis and tuberculosis, might be more susceptible. In this study, we determined if polymorphisms in genes important in innate immunity are associated with increased susceptibility to infectious and non-infectious lung diseases, particularly tuberculosis and sarcoidosis, respectively, and therefore might be a risk factor for inhalation anthrax. Examination of 45 non-synonymous polymorphisms in ten genes: p47phox (NCF1), p67phox (NCF2), p40phox (NCF4), p22phox (CYBA), gp91phox (CYBB), DUOX1, DUOX2, TLR2, TLR9 and alpha 1-antitrypsin (AAT) in a cohort of 95 lung disease individuals and 95 control individuals did not show an association of these polymorphisms with increased susceptibility to lung disease

    Cigarette smoking, genetic polymorphisms and colorectal cancer risk: the Fukuoka Colorectal Cancer Study

    Get PDF
    Background: It is uncertain whether smoking is related to colorectal cancer risk. Cytochrome P-450 CYP1A1, glutathione-S-transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1) are important enzymes in the metabolism of tobacco carcinogens, and functional genetic polymorphisms are known for these enzymes. We investigated the relation of cigarette smoking and related genetic polymorphisms to colorectal cancer risk, with special reference to the interaction between smoking and genetic polymorphism. Methods: We used data from the Fukuoka Colorectal Cancer Study, a population-based case-control study, including 685 cases and 778 controls who gave informed consent to genetic analysis. Interview was conducted to assess lifestyle factors, and DNA was extracted from buffy coat. Results: In comparison with lifelong nonsmokers, the odds ratios (OR) of colorectal cancer for <400, 400-799 and ≥800 cigarette-years were 0.65 (95 % confidence interval [CI], 0.45-0.89), 1.16 (0.83-1.62) and 1.14 (0.73-1.77), respectively. A decreased risk associated with light smoking was observed only for colon cancer, and rectal cancer showed an increased risk among those with ≥400 cigarette-years (OR 1.60, 95 % CI 1.04-2.45). None of the polymorphisms under study was singly associated with colorectal cancer risk. Of the gene-gene interactions studied, the composite genotype of CYP1A1*2A or CYP1A1*2C and GSTT1 polymorphisms was associated with a decreased risk of colorecta

    A Functional NQO1 609C>T Polymorphism and Risk of Gastrointestinal Cancers: A Meta-Analysis

    Get PDF
    Background: The functional polymorphism (rs1800566) in the NQO1 gene, a 609C.T substitution, leading to proline-toserine amino-acid and enzyme activity changes, has been implicated in cancer risk, but individually published studies showed inconclusive results. Methodology/Principal Findings: We performed a meta-analysis of 20 publications with a total of 5,491 cases and 5,917 controls, mainly on gastrointestinal (GI) cancers. We summarized the data on the association between the NQO1 609C.T polymorphism and risk of GI cancers and performed subgroup analyses by ethnicity, cancer site, and study quality. We found that the variant CT heterozygous and CT/TT genotypes of the NQO1 609 C.T polymorphism were associated with a modestly increased risk of GI cancers (CT vs. CC: OR = 1.10, 95 % CI = 1.01 – 1.19, P heterogeneity = 0.27, I 2 = 0.15; CT/TT vs. CC: OR = 1.11, 95%CI = 1.02 – 1.20, Pheterogeneity = 0.14; I 2 = 0.27). Following further stratified analyses, the increased risk was only observed in subgroups of Caucasians, colorectal cancer in Caucasians, and high quality studies. Conclusions: This meta-analysis suggests that the NQO1 609T allele is a low-penetrance risk factor for GI cancers. Although the effect on GI cancers may be modified by ethnicity and cancer sites, small sample seizes of the subgroup analyse

    Recovery of dialysis patients with COVID-19 : health outcomes 3 months after diagnosis in ERACODA

    Get PDF
    Background. Coronavirus disease 2019 (COVID-19)-related short-term mortality is high in dialysis patients, but longer-term outcomes are largely unknown. We therefore assessed patient recovery in a large cohort of dialysis patients 3 months after their COVID-19 diagnosis. Methods. We analyzed data on dialysis patients diagnosed with COVID-19 from 1 February 2020 to 31 March 2021 from the European Renal Association COVID-19 Database (ERACODA). The outcomes studied were patient survival, residence and functional and mental health status (estimated by their treating physician) 3 months after COVID-19 diagnosis. Complete follow-up data were available for 854 surviving patients. Patient characteristics associated with recovery were analyzed using logistic regression. Results. In 2449 hemodialysis patients (mean ± SD age 67.5 ± 14.4 years, 62% male), survival probabilities at 3 months after COVID-19 diagnosis were 90% for nonhospitalized patients (n = 1087), 73% for patients admitted to the hospital but not to an intensive care unit (ICU) (n = 1165) and 40% for those admitted to an ICU (n = 197). Patient survival hardly decreased between 28 days and 3 months after COVID-19 diagnosis. At 3 months, 87% functioned at their pre-existent functional and 94% at their pre-existent mental level. Only few of the surviving patients were still admitted to the hospital (0.8-6.3%) or a nursing home (∼5%). A higher age and frailty score at presentation and ICU admission were associated with worse functional outcome. Conclusions. Mortality between 28 days and 3 months after COVID-19 diagnosis was low and the majority of patients who survived COVID-19 recovered to their pre-existent functional and mental health level at 3 months after diagnosis
    • …
    corecore