70 research outputs found

    Inhibition of transforming growth factor α (TGF-α)-mediated growth effects in ovarian cancer cell lines by a tyrosine kinase inhibitor ZM 252868

    Get PDF
    The modulating effects of the epidermal growth factor (EGF) receptor-specific tyrosine kinase inhibitor ZM 252868 on cell growth and signalling have been evaluated in four ovarian carcinoma cell lines PE01, PE04, SKOV-3 and PE01CDDP. Transforming growth factor α (TGF-α)-stimulated growth was completely inhibited by concentrations ≥ 0.3 μM in the PE01 and PE04 cell lines and by ≥ 0.1 μM in SKOV-3 cells. TGF-α inhibition of PE01CDDP growth was reversed by concentrations ≥ 0.1 μM ZM 252868. TGF-α-stimulated tyrosine phosphorylation of both the EGF receptor and c-erbB2 receptor in all four cell lines. The inhibitor ZM 252868, at concentrations ≥ 0.3 μM, completely inhibited TGF-α-stimulated tyrosine phosphorylation of the EGF receptor and reduced phosphorylation of the c-erbB2 protein. EGF-activated EGF receptor tyrosine kinase activity was completely inhibited by 3 μM ZM 252868 in PE01, SKOV-3 and PE01CDDP cells. These data indicate that the EGF receptor-targeted TK inhibitor ZM 252868 can inhibit growth of ovarian carcinoma cells in vitro consistent with inhibition of tyrosine phosphorylation at the EGF receptor. © 1999 Cancer Research Campaig

    Predicting the F(ab)-mediated effect of monoclonal antibodies in vivo by combining cell-level kinetic and pharmacokinetic modelling

    Get PDF
    Cell-level kinetic models for therapeutically relevant processes increasingly benefit the early stages of drug development. Later stages of the drug development processes, however, rely on pharmacokinetic compartment models while cell-level dynamics are typically neglected. We here present a systematic approach to integrate cell-level kinetic models and pharmacokinetic compartment models. Incorporating target dynamics into pharmacokinetic models is especially useful for the development of therapeutic antibodies because their effect and pharmacokinetics are inherently interdependent. The approach is illustrated by analysing the F(ab)-mediated inhibitory effect of therapeutic antibodies targeting the epidermal growth factor receptor. We build a multi-level model for anti-EGFR antibodies by combining a systems biology model with in vitro determined parameters and a pharmacokinetic model based on in vivo pharmacokinetic data. Using this model, we investigated in silico the impact of biochemical properties of anti-EGFR antibodies on their F(ab)-mediated inhibitory effect. The multi-level model suggests that the F(ab)-mediated inhibitory effect saturates with increasing drug-receptor affinity, thereby limiting the impact of increasing antibody affinity on improving the effect. This indicates that observed differences in the therapeutic effects of high affinity antibodies in the market and in clinical development may result mainly from Fc-mediated indirect mechanisms such as antibody-dependent cell cytotoxicity

    Reduced expression of BAX is associated with poor prognosis in patients with epithelial ovarian cancer: a multifactorial analysis of TP53, p21, BAX and BCL-2

    Get PDF
    Traditional clinicopathological features do not predict which patients will develop chemotherapy resistance. The TP53 gene is frequently altered in ovarian cancer but its prognostic implications are controversial. Little is known on the impact of TP53-downstream genes on prognosis. Using molecular and immunohistochemical analyses we examined TP53 and its downstream genes p21 BAX and BCL-2 in ovarian tumour tissues and have evaluated the results in relation to clinico-pathological parameters, clinical outcome and response to platinum-based chemotherapy. Associations of tested factors and patient and tumour characteristics were studied by Spearman rank correlation and Pearsons χ2 test. The Cox proportional hazard model was used for univariate and multivariate analysis. The associations of tested factors with response was tested using logistic regression analysis. TP53 mutation, p21 and BCL-2 expression were not associated with increased rates of progression and death. Expression of TP53 was associated with a shorter overall survival only (relative hazard rate [RHR] 2.01 P = 0.03). Interestingly, when combining TP53 mutation and expression data, this resulted in an increased association with overall survival (P = 0.008). BAX expression was found to be associated with both progression-free (RHR 0.44 P = 0.05) and overall survival (RHR 0.42 P = 0.03). Those patients who simultaneously expressed BAX and BCL-2 had a longer progression-free and overall survival compared to patients whose tumours did not express BCL-2 (P = 0.05 and 0.015 respectively). No relations were observed between tested factors and response to platinum-based chemotherapy. We conclude that BAX expression may represent a prognostic indicator for patients with ovarian cancer and that the combined evaluation of BAX and BCL-2 may provide additional prognostic significance.   http://www.bjcancer.com © 2001 Cancer Research Campaig

    Differential expression of estrogen, progestrone and epidermal growth factor receptors in normal, benign and malignant human breast tissues using dual staining immunohistochemistry

    Get PDF
    Distribution of estrogen (ER), progesterone (PR) receptors, and epidermal growth factor (EGF) receptors was assayed by dual staining immuno-histochemistry on 28 selected cytosolic ER-positive breast carcinomas and 22 nonmalignant breast tissues. ER-positive tumor cells were detected in 26(93%) and EGF receptor positive tumor cells were detected in 7(25%) carcinomas. In five tumors both ER and EGF receptors were detected but localized in distinct tumor cells. Only in one case of ductal carcinoma in situ co-expression was observed in a subset of tumor cells. In contrast, simultaneous expression of ER/PR and EGF receptors was observed in non-neoplastic ductal remnants in the majority of the carcinomas and the fibroadenomas. In addition, double-positive cells were occasionally detected in luminal epithelial cells of normal breast tissue and mastopathies. This study shows that ER/PR and EGF receptors in breast tumor cells are inversely related at the single cell level. However, demonstration of ER/PR and EGF receptors in individual normal luminal cells shows that expression is not mutually exclusive
    corecore