11 research outputs found

    Neuromonitoring, neuroimaging, and neurodevelopmental follow-up practices in neonatal congenital heart disease: a European survey

    Full text link
    BACKGROUND Brain injury and neurodevelopmental impairment remain a concern in children with complex congenital heart disease (CHD). A practice guideline on neuromonitoring, neuroimaging, and neurodevelopmental follow-up in CHD patients undergoing cardiopulmonary bypass surgery is lacking. The aim of this survey was to systematically evaluate the current practice in centers across Europe. METHODS An online-based structured survey was sent to pediatric cardiac surgical centers across Europe between April 2019 and June 2020. Results were summarized by descriptive statistics. RESULTS Valid responses were received by 25 European centers, of which 23 completed the questionnaire to the last page. Near-infrared spectroscopy was the most commonly used neuromonitoring modality used in 64, 80, and 72% preoperatively, intraoperatively, and postoperatively, respectively. Neuroimaging was most commonly performed by means of cranial ultrasound in 96 and 84% preoperatively and postoperatively, respectively. Magnetic resonance imaging was obtained in 72 and 44% preoperatively and postoperatively, respectively, but was predominantly reserved for clinically symptomatic patients (preoperatively 67%, postoperatively 64%). Neurodevelopmental follow-up was implemented in 40% of centers and planned in 24%. CONCLUSIONS Heterogeneity in perioperative neuromonitoring and neuroimaging practice in CHD in centers across Europe is large. The need for neurodevelopmental follow-up has been recognized. A clear practice guideline is urgently needed. IMPACT There is large heterogeneity in neuromonitoring, neuroimaging, and neurodevelopmental follow-up practices among European centers caring for neonates with complex congenital heart disease. This study provides a systematic evaluation of the current neuromonitoring, neuroimaging, and neurodevelopmental follow-up practice in Europe. The results of this survey may serve as the basis for developing a clear practice guideline that could help to early detect and prevent neurological and neurodevelopmental sequelae in neonates with complex congenital heart disease

    Risk Factors for Perioperative Brain Lesions in Infants With Congenital Heart Disease:A European Collaboration

    Get PDF
    Infants with congenital heart disease are at risk of brain injury and impaired neurodevelopment. The aim was to investigate risk factors for perioperative brain lesions in infants with congenital heart disease. METHODS: Infants with transposition of the great arteries, single ventricle physiology, and left ventricular outflow tract and/or aortic arch obstruction undergoing cardiac surgery <6 weeks after birth from 3 European cohorts (Utrecht, Zurich, and London) were combined. Brain lesions were scored on preoperative (transposition of the great arteries N=104; single ventricle physiology N=35; and left ventricular outflow tract and/or aortic arch obstruction N=41) and postoperative (transposition of the great arteries N=88; single ventricle physiology N=28; and left ventricular outflow tract and/or aortic arch obstruction N=30) magnetic resonance imaging for risk factor analysis of arterial ischemic stroke, cerebral sinus venous thrombosis, and white matter injury. RESULTS: Preoperatively, induced vaginal delivery (odds ratio [OR], 2.23 [95% CI, 1.06–4.70]) was associated with white matter injury and balloon atrial septostomy increased the risk of white matter injury (OR, 2.51 [95% CI, 1.23–5.20]) and arterial ischemic stroke (OR, 4.49 [95% CI, 1.20–21.49]). Postoperatively, younger postnatal age at surgery (OR, 1.18 [95% CI, 1.05–1.33]) and selective cerebral perfusion, particularly at ≤20 °C (OR, 13.46 [95% CI, 3.58–67.10]), were associated with new arterial ischemic stroke. Single ventricle physiology was associated with new white matter injury (OR, 2.88 [95% CI, 1.20–6.95]) and transposition of the great arteries with new cerebral sinus venous thrombosis (OR, 13.47 [95% CI, 2.28–95.66]). Delayed sternal closure (OR, 3.47 [95% CI, 1.08–13.06]) and lower intraoperative temperatures (OR, 1.22 [95% CI, 1.07–1.36]) also increased the risk of new cerebral sinus venous thrombosis. CONCLUSIONS: Delivery planning and surgery timing may be modifiable risk factors that allow personalized treatment to minimize the risk of perioperative brain injury in severe congenital heart disease. Further research is needed to optimize cerebral perfusion techniques for neonatal surgery and to confirm the relationship between cerebral sinus venous thrombosis and perioperative risk factors

    Risk Factors for Perioperative Brain Lesions in Infants With Congenital Heart Disease: A European Collaboration

    Full text link
    Background: Infants with congenital heart disease are at risk of brain injury and impaired neurodevelopment. The aim was to investigate risk factors for perioperative brain lesions in infants with congenital heart disease. Methods: Infants with transposition of the great arteries, single ventricle physiology, and left ventricular outflow tract and/or aortic arch obstruction undergoing cardiac surgery <6 weeks after birth from 3 European cohorts (Utrecht, Zurich, and London) were combined. Brain lesions were scored on preoperative (transposition of the great arteries N=104; single ventricle physiology N=35; and left ventricular outflow tract and/or aortic arch obstruction N=41) and postoperative (transposition of the great arteries N=88; single ventricle physiology N=28; and left ventricular outflow tract and/or aortic arch obstruction N=30) magnetic resonance imaging for risk factor analysis of arterial ischemic stroke, cerebral sinus venous thrombosis, and white matter injury. Results: Preoperatively, induced vaginal delivery (odds ratio [OR], 2.23 [95% CI, 1.06-4.70]) was associated with white matter injury and balloon atrial septostomy increased the risk of white matter injury (OR, 2.51 [95% CI, 1.23-5.20]) and arterial ischemic stroke (OR, 4.49 [95% CI, 1.20-21.49]). Postoperatively, younger postnatal age at surgery (OR, 1.18 [95% CI, 1.05-1.33]) and selective cerebral perfusion, particularly at ≤20 °C (OR, 13.46 [95% CI, 3.58-67.10]), were associated with new arterial ischemic stroke. Single ventricle physiology was associated with new white matter injury (OR, 2.88 [95% CI, 1.20-6.95]) and transposition of the great arteries with new cerebral sinus venous thrombosis (OR, 13.47 [95% CI, 2.28-95.66]). Delayed sternal closure (OR, 3.47 [95% CI, 1.08-13.06]) and lower intraoperative temperatures (OR, 1.22 [95% CI, 1.07-1.36]) also increased the risk of new cerebral sinus venous thrombosis. Conclusions: Delivery planning and surgery timing may be modifiable risk factors that allow personalized treatment to minimize the risk of perioperative brain injury in severe congenital heart disease. Further research is needed to optimize cerebral perfusion techniques for neonatal surgery and to confirm the relationship between cerebral sinus venous thrombosis and perioperative risk factors. Keywords: heart diseases; ischemic stroke; magnetic resonance imaging; pedatrics; risk factors; venous thrombosis; white matter

    Parental Awareness of Oral Health and Nutritional Behavior in Children with Congenital Heart Diseases Compared to Healthy Children

    No full text
    Parents of children with congenital heart disease (CHD) seem to underestimate the importance of optimized oral health. The low priority for a good oral hygiene and a healthy diet can be a risk factor for odontogenic bacteremia and infective endocarditis. The aim of this study was the evaluation of the disease awareness and dental knowledge of the parents using a questionnaire. Therefore, parents from 107 children with CHD and a healthy control group (HCG) consisting of 101 children both aged 2 to 6 years were asked to complete a questionnaire containing items about the general health, oral hygiene behavior, preventive measures, dental visits and intake of potential drinks and cariogenic nutrition of their child. The results of the present study show that the CHD group had a poorer oral health behavior than the HCG. Healthy children brushed their teeth significantly more often (65.4%) than the CHD children (45.1%). Only 75% of CHD children used fluorides in their daily life in comparison to 86.6% of the healthy children, 8.7% of their parents neglected completely fluoride supplementation. Of all CHD children 23.1% in comparison to 8.1% of the controls had never visited a dentist before. Furthermore, the daily consumption of cariogenic food and drinks was generally higher in the CHD group. These findings demonstrate a need for improvement in parental knowledge of the efficiency of different measures to improve dental health. This important oral health for CHD children from the early stage of life is obvious, especially regarding their risk for odontogenic bacteria and infective endocarditis

    Evaluation of the Effectiveness of an Interdisciplinary Preventive Oral Hygiene Program for Children with Congenital Heart Disease

    No full text
    It is recognized that children with congenital heart disease (CHD) are predisposed to having poorer oral health. Therefore, the purpose of this study was to evaluate the effectiveness of an interdisciplinary preventive oral hygiene program (POHP) for children with CHD. The aim was the reduction of the incidence of dental caries, as well as improvement of oral hygiene. The total number of participants in this study was 107 children with CHD aged between two to six years. At baseline, these children were compared to a healthy control group (HCG) of 101 children of similar age from five preschools in Giessen, Germany. All examinations were carried out before the introduction of a standardized POHP. The Quigley/Hein Plaque- (QHI), Silness/Loe Gingival- (GI) and Gingival Hyperplasia Index (GHI) were determined. Starting with baseline, the described procedures were repeated in the CHD group during two follow-ups after three and six months. In the first examination, compared to controls, CHD children showed a significantly (p &lt; 0.05) poorer oral hygiene (QHI: 2.6; GI: 0.3; GHI: 0.2). All oral hygiene parameters (QHI, GI, GHI) of the CHD group improved significantly over the whole period of the preventive program (p &lt; 0.05). These results demonstrated an improvement in CHD children involved in a standardized POHP. The data with regard to the general health of these risk patients, including prevention of endocarditis, demonstrate the necessity of an interdisciplinary approach between pediatric cardiologists, pediatricians and dentists

    Long-term neurodevelopmental outcome and serial cerebral magnetic resonance imaging assessment in Fontan patients at school age

    Full text link
    OBJECTIVES Children with univentricular congenital heart disease undergoing staged surgical palliation are at risk for impaired neurodevelopmental (ND) outcome. Little is known about the long-term effects on brain growth until school age. METHODS In a prospective two-centre study, consecutive patients undergoing stage I (Hybrid or Norwood) to stage III (Fontan procedure) were evaluated by 2 serial cerebral magnetic resonance imaging examinations, somatic growth and ND testing before Fontan procedure at 2 years of age (Bayley-III) and after Fontan at 6-8 years of age (Wechsler Intelligence Scale for Children-third edition). Magnetic resonance imaging findings were compared with 8 healthy controls. Medical and sociodemographic characteristics were documented and related to cerebral and ND findings. RESULTS We examined 33 children (16 female) at a mean age of 2.3 (0.35) and 6.8 (± 0.7) years. The mean Bayley-III cognitive scales were 99.1 (9.9), language scales 98.4 (11.9) and motor scales 98.5 (13.8) at the first examination. Follow-up at school age showed a mean total IQ of 86.7 (13.6). The rate of structural brain lesions increased from 39% at 2 years to 58% at school age. Bayley-III language scale (P = 0.021) and mean Wechsler Intelligence Scale for Children-third edition (P = 0.019) were lower in children with pathological MR findings. Total brain volume (P < 0.001), total grey matter volume (P = 0.002), deep grey matter volume (P = 0.001) and white matter volume (P < 0.001) were smaller in patients compared to age- and gender-matched healthy controls. CONCLUSIONS Smaller brain volumes and structural brain lesions in complex congenital heart defect patients at school age are associated with impaired ND outcome. For the evaluation of predictive surgical or clinical factors, larger multicentre studies are needed

    Neuromonitoring, neuroimaging, and neurodevelopmental follow-up practices in neonatal congenital heart disease:a European survey

    Get PDF
    BACKGROUND: Brain injury and neurodevelopmental impairment remain a concern in children with complex congenital heart disease (CHD). A practice guideline on neuromonitoring, neuroimaging, and neurodevelopmental follow-up in CHD patients undergoing cardiopulmonary bypass surgery is lacking. The aim of this survey was to systematically evaluate the current practice in centers across Europe. METHODS: An online-based structured survey was sent to pediatric cardiac surgical centers across Europe between April 2019 and June 2020. Results were summarized by descriptive statistics. RESULTS: Valid responses were received by 25 European centers, of which 23 completed the questionnaire to the last page. Near-infrared spectroscopy was the most commonly used neuromonitoring modality used in 64, 80, and 72% preoperatively, intraoperatively, and postoperatively, respectively. Neuroimaging was most commonly performed by means of cranial ultrasound in 96 and 84% preoperatively and postoperatively, respectively. Magnetic resonance imaging was obtained in 72 and 44% preoperatively and postoperatively, respectively, but was predominantly reserved for clinically symptomatic patients (preoperatively 67%, postoperatively 64%). Neurodevelopmental follow-up was implemented in 40% of centers and planned in 24%. CONCLUSIONS: Heterogeneity in perioperative neuromonitoring and neuroimaging practice in CHD in centers across Europe is large. The need for neurodevelopmental follow-up has been recognized. A clear practice guideline is urgently needed. IMPACT: There is large heterogeneity in neuromonitoring, neuroimaging, and neurodevelopmental follow-up practices among European centers caring for neonates with complex congenital heart disease. This study provides a systematic evaluation of the current neuromonitoring, neuroimaging, and neurodevelopmental follow-up practice in Europe. The results of this survey may serve as the basis for developing a clear practice guideline that could help to early detect and prevent neurological and neurodevelopmental sequelae in neonates with complex congenital heart disease

    Risk Factors for Perioperative Brain Lesions in Infants With Congenital Heart Disease: A European Collaboration

    No full text
    BACKGROUND: Infants with congenital heart disease are at risk of brain injury and impaired neurodevelopment. The aim was to investigate risk factors for perioperative brain lesions in infants with congenital heart disease. METHODS: Infants with transposition of the great arteries, single ventricle physiology, and left ventricular outflow tract and/or aortic arch obstruction undergoing cardiac surgery <6 weeks after birth from 3 European cohorts (Utrecht, Zurich, and London) were combined. Brain lesions were scored on preoperative (transposition of the great arteries N=104; single ventricle physiology N=35; and left ventricular outflow tract and/or aortic arch obstruction N=41) and postoperative (transposition of the great arteries N=88; single ventricle physiology N=28; and left ventricular outflow tract and/or aortic arch obstruction N=30) magnetic resonance imaging for risk factor analysis of arterial ischemic stroke, cerebral sinus venous thrombosis, and white matter injury. RESULTS: Preoperatively, induced vaginal delivery (odds ratio [OR], 2.23 [95% CI, 1.06-4.70]) was associated with white matter injury and balloon atrial septostomy increased the risk of white matter injury (OR, 2.51 [95% CI, 1.23-5.20]) and arterial ischemic stroke (OR, 4.49 [95% CI, 1.20-21.49]). Postoperatively, younger postnatal age at surgery (OR, 1.18 [95% CI, 1.05-1.33]) and selective cerebral perfusion, particularly at ≤20 °C (OR, 13.46 [95% CI, 3.58-67.10]), were associated with new arterial ischemic stroke. Single ventricle physiology was associated with new white matter injury (OR, 2.88 [95% CI, 1.20-6.95]) and transposition of the great arteries with new cerebral sinus venous thrombosis (OR, 13.47 [95% CI, 2.28-95.66]). Delayed sternal closure (OR, 3.47 [95% CI, 1.08-13.06]) and lower intraoperative temperatures (OR, 1.22 [95% CI, 1.07-1.36]) also increased the risk of new cerebral sinus venous thrombosis. CONCLUSIONS: Delivery planning and surgery timing may be modifiable risk factors that allow personalized treatment to minimize the risk of perioperative brain injury in severe congenital heart disease. Further research is needed to optimize cerebral perfusion techniques for neonatal surgery and to confirm the relationship between cerebral sinus venous thrombosis and perioperative risk factors
    corecore