802 research outputs found
Measuring the electrical impedance of mouse brain tissue
We report on an experimental method to measure conductivity of cortical tissue. We use a pair of 5mm diameter Ag/AgCl electrodes in a Perspex sandwich device that can be brought to a distance of 400 microns apart. The apparatus is brought to uniform temperature before use. Electrical impedance of a sample is measured across the frequency range 20 Hz-2.0 MHz with an Agilent 4980A four-point impedance monitor in a shielded room. The equipment has been used to measure the conductivity of mature mouse brain cortex in vitro. Slices 400 microns in thickness are prepared on a vibratome. Slices are bathed in artificial cerebrospinal fluid (ACSF) to keep them alive. Slices are removed from the ACSF and sections of cortical tissue approximately 2 mm times 2 mm are cut with a razor blade. The sections are photographed through a calibrated microscope to allow identification of their cross-sectional areas. Excess ACSF is removed from the sample and the sections places between the electrodes. The impedance is measured across the frequency range and electrical conductivity calculated. Results show two regions of dispersion. A low frequency region is evident below approximately 10 kHz, and a high frequency dispersion above this. Results at the higher frequencies show a good fit to the Cole-Cole model of impedance of biological tissue; this model consists of resistive and non-linear capacitive elements. Physically, these elements are likely to arise due to membrane polarization and migration of ions both intra- and extra-cellularly.http://www.iupab2014.org/assets/IUPAB/NewFolder/iupab-abstracts.pd
A continuum model for the dynamics of the phase transition from slow-wave sleep to REM sleep
Previous studies have shown that activated cortical states (awake and rapid eye-movement (REM) sleep), are associated with increased cholinergic input into the cerebral cortex. However, the mechanisms that underlie the detailed dynamics of the cortical transition from slow-wave to REM sleep have not been quantitatively modeled. How does the sequence of abrupt changes in the cortical dynamics (as detected in the electrocorticogram) result from the more gradual change in subcortical cholinergic input? We compare the output from a continuum model of cortical neuronal dynamics with experimentally-derived rat electrocorticogram data. The output from the computer model was consistent with experimental observations. In slow-wave sleep, 0.5â2-Hz oscillations arise from the cortex jumping between âupâ and âdownâ states on the stationary-state manifold. As cholinergic input increases, the upper state undergoes a bifurcation to an 8-Hz oscillation. The coexistence of both oscillations is similar to that found in the intermediate stage of sleep of the rat. Further cholinergic input moves the trajectory to a point where the lower part of the manifold in not available, and thus the slow oscillation abruptly ceases (REM sleep). The model provides a natural basis to explain neuromodulator-induced changes in cortical activity, and indicates that a cortical phase change, rather than a brainstem âflip-flopâ, may describe the transition from slow-wave sleep to REM
Local quantum phase transition in the pseudogap Anderson model: scales, scaling and quantum critical dynamics
The pseudogap Anderson impurity model provides a paradigm for understanding
local quantum phase transitions, in this case between generalised fermi liquid
and degenerate local moment phases. Here we develop a non-perturbative local
moment approach to the generic asymmetric model, encompassing all energy scales
and interaction strengths and leading thereby to a rich description of the
problem. We investigate in particular underlying phase boundaries, the critical
behaviour of relevant low-energy scales, and single-particle dynamics embodied
in the local spectrum. Particular attention is given to the resultant universal
scaling behaviour of dynamics close to the transition in both the GFL and LM
phases, the scale-free physics characteristic of the quantum critical point
itself, and the relation between the two.Comment: 39 pages, 19 figure
Functional renormalization group approach to zero-dimensional interacting systems
We apply the functional renormalization group method to the calculation of
dynamical properties of zero-dimensional interacting quantum systems. As case
studies we discuss the anharmonic oscillator and the single impurity Anderson
model. We truncate the hierarchy of flow equations such that the results are at
least correct up to second order perturbation theory in the coupling. For the
anharmonic oscillator energies and spectra obtained within two different
functional renormalization group schemes are compared to numerically exact
results, perturbation theory, and the mean field approximation. Even at large
coupling the results obtained using the functional renormalization group agree
quite well with the numerical exact solution. The better of the two schemes is
used to calculate spectra of the single impurity Anderson model, which then are
compared to the results of perturbation theory and the numerical
renormalization group. For small to intermediate couplings the functional
renormalization group gives results which are close to the ones obtained using
the very accurate numerical renormalization group method. In particulare the
low-energy scale (Kondo temperature) extracted from the functional
renormalization group results shows the expected behavior.Comment: 22 pages, 8 figures include
Design and demonstration in vitro of a mouse-specific Transcranial Magnetic Stimulation coil
Background. Transcranial Magnetic Stimulation (TMS) is a technique used to treat different neurological disorders non-invasively. A pulsed current to a coil generates a magnetic field (B-field) which induces an electric field (E-field). Underlying biophysical effects of TMS are unclear. Therefore, animal experiments are needed; however, making small TMS coils suitable for mice is difficult and their field strengths are typically much lower than for human sized coils. Objectives/Hypothesis. We aimed to design and demonstrate a mouse-specific coil that can generate high and focused E-field. Methods. We designed a tapered TMS coil of 50 turns of 0.2 mm diameter copper wire around a 5 mm diameter tapered powdered iron core and discharged a 220 ÎŒF capacitor at 50 V through it. We measured B-field with a Hall probe and induced E-field with a wire loop. We measured temperature rise with a thermocouple. We applied 1200 pulses of continuous theta burst stimulation (cTBS) and intermittent theta burst stimulation (iTBS) to mouse brain slices and analysed how spontaneous electrical activity changed. Results. The coil gave maximum B-field of 685 mT at the base of the coil and 340 mT at 2 mm below the coil, and maximum E-field 2 mm below the coil of approximately 10 V/m, at 50 V power supply, with a temperature increase of 20 degrees after 1200 pulses of cTBS. We observed no changes in B-field with heating. cTBS reduced frequency of spontaneous population events in mouse brain slices up to 20 minutes after stimulation and iTBS increased frequency up to 20 minutes after stimulation. No frequency changes occurred after 20 minutes. No changes in amplitude of spontaneous events were found. Conclusion. The design generated fields strong enough to modulate brain activity in vitro
Bird-biting mosquitoes on farms in southern England
Mosquitoes that blood-feed on avian hosts are important vectors of many arthropod-borne viruses (arboviruses). In Europe, these include West Nile virus (WNV), Usutu virus (USUTV) and Sindbis virus. These are all maintained in enzootic bird-mosquito-bird cycles and are important veterinary and medical threats to the UK. Principally, veterinary concerns lie with the risks to domestic animals, such as the incidental spillover infection of horses with WNV which may lead to serious neurological sequelae. Wildlife may also be affected, with certain wild birds being highly susceptible to infection and death with USUTV, although poultry are less susceptible. To date, UK surveillance for these viruses has not yielded evidence of active virus transmission although serological evidence has been reported
Oscillations of the magnetic polarization in a Kondo impurity at finite magnetic fields
The electronic properties of a Kondo impurity are investigated in a magnetic
field using linear response theory. The distribution of electrical charge and
magnetic polarization are calculated in real space. The (small) magnetic field
does not change the charge distribution. However, it unmasks the Kondo cloud.
The (equal) weight of the d-electron components with their magnetic moment up
and down is shifted and the compensating s-electron clouds don't cancel any
longer (a requirement for an experimental detection of the Kondo cloud). In
addition to the net magnetic polarization of the conduction electrons an
oscillating magnetic polarization with a period of half the Fermi wave length
is observed. However, this oscillating magnetic polarization does not show the
long range behavior of Rudermann-Kittel-Kasuya-Yosida oscillations because the
oscillations don't extend beyond the Kondo radius. They represent an internal
electronic structure of the Kondo impurity in a magnetic field. PACS: 75.20.Hr,
71.23.An, 71.27.+
Spectral function of the Kondo model in high magnetic fields
Using a recently developed perturbative renormalization group (RG) scheme, we
calculate analytically the spectral function of a Kondo impurity for either
large frequencies w or large magnetic field B and arbitrary frequencies. For
large w >> max[B,T_K] the spectral function decays as 1/ln^2[ w/T_K ] with
prefactors which depend on the magnetization. The spin-resolved spectral
function displays a pronounced peak at w=B with a characteristic asymmetry. In
a detailed comparison with results from numerical renormalization group (NRG)
and bare perturbation theory in next-to-leading logarithmic order, we show that
our perturbative RG scheme is controlled by the small parameter 1/ln[
max(w,B)/T_K]. Furthermore, we assess the ability of the NRG to resolve
structures at finite frequencies.Comment: 8 pages, version published in PRB, minor change
Zero temperature metal-insulator transition in the infinite-dimensional Hubbard model
The zero temperature transition from a paramagnetic metal to a paramagnetic
insulator is investigated in the Dynamical Mean Field Theory for the Hubbard
model. The self-energy of the effective impurity Anderson model (on which the
Hubbard model is mapped) is calculated using Wilson's Numerical Renormalization
Group method. Results for quasiparticle weight, spectral function and
self-energy are discussed for Bethe and hypercubic lattice. In both cases, the
metal-insulator transition is found to occur via the vanishing of a
quasiparticle resonance which appears to be isolated from the Hubbard bands.Comment: 4 pages, 3 eps-figures include
The optical performance of frequency selective bolometers
Frequency Selective Bolometers (FSBs) are a new type of detector for
millimeter and sub-millimeter wavelengths that are transparent to all but a
narrow range of frequencies as set by characteristics of the absorber itself.
Therefore, stacks of FSBs tuned to different frequencies provide a low-loss
compact method for utilizing a large fraction of the light collected by a
telescope. Tests of prototype FSBs, described here, indicate that the
absorption spectra are well predicted by models, that peak absolute absorption
efficiencies of order 50% are attainable, and that their out-of-band
transmission is high.Comment: 32 pages, 9 figure
- âŠ