1,058 research outputs found
The Impact of Simulated Altitude on Selected Elements of Running Performance
Background: Simulating altitude at sea level is increasingly more popular among recreationally-trained athletes across the sports spectrum. The AltO2Lab is a commercially-available, handheld, rebreathing apparatus purported to simulate altitude. Currently, there is an overall dearth of evidence regarding the efficacy of the device. Purpose: The goal of this study was to add evidence supporting or challenging the effectiveness of the device to improve selected running performance-related variables and to investigate the time-course of changes should benefits be evidenced. Methods: The 37-day protocol included familiarization, baseline, and 2 follow-up visits during which time hematological (hematocrit and lactate), physiological (running economy, maximal VO2, and heart rate), and psychological (Borg RPE) variables were monitored at rest, during relative submaximal, and/or maximal treadmill exercise. Altitude training days (18 days; one hour each day) were fitted within the 37-day time-line to occur after the baseline visit but before the respective follow-up visits. Specifically, the altitude training took place in 3, 6-day blocks of device usage with exposure, monitored by oximetry, intensifying across the days and blocks. Twelve days of altitude training were completed before the first follow-up visit while the final 6 days of altitude training were completed between the first and second follow-up visit. In this manner, the follow-ups could serve to evaluate the potential effectiveness of the device and narrow the time course of changes to a specific usage duration. Results: Six, recreationally-trained athletes (Females = 4; Males = 2; Age = 22.0 ± 2.9 yrs.; Baseline VO2max 52.7 ± 6.7) enrolled in the study. One subject was removed due to noncompliance. Overall, simulated altitude at the prescribed, intensifying dosage, failed to change both hematocrit (p = 0.469) and VO2max (p = 0.184) when analyzed by repeated measures analysis of variance. Additionally, no differences were found for secondary variables including: running economy, heart rate, lactate or RPE (all p \u3e 0.05). Conclusion: Presently, the AltO2Lab failed to improve selected variables related to running performance. This finding is in contrast to previous investigations with the device but it does align with the knowledge that a stronger stimulus might be necessary to induce HIF-mediated erythropoiesis to the extent that the cascade could alter hematological and subsequently performance ability through enhanced oxygen-carrying capacity. These results are preliminary and a final cohort will complete testing before concluding results will be disseminated
Partial Purification of Peroxiredoxin-2 From Porcine Skeletal Muscle
Fresh meat quality is adversely affected by protein oxidation. However, a fundamental understanding of the diverse factors that influence protein oxidation in postmortem muscle remains elusive. Peroxiredoxin-2 (Prdx2), an antioxidant protein, is more abundant in tough meat based on instrumental tenderness; however, the role of Prdx2 in postmortem skeletal muscle is unknown. Therefore, the objective was to develop a method to purify Prdx2 from the diaphragm, psoas major, and longissimus lumborum. Proteins soluble at low ionic strength were extracted, dialyzed, clarified, and loaded onto a Q-Sepharose anion exchange column equilibrated with TEM (pH 7.4). In all preparations, Prdx2 eluted between about 75 and 115 mM NaCl. Immunoreactive fractions were dialyzed against TEM (pH 8.0), clarified, and loaded onto a DEAE-650S anion exchange column. In all preparations, Prdx2 eluted between approximately 55 and 75 mM NaCl. Immunoreactive fractions were concentrated and loaded onto a Superose-12 size exclusion column. Prdx2 was detected between 14 and 16 mL, and these fractions were concentrated and reduced with 0.5% 2-mercaptoethanol. A final pass over the Superose-12 column was conducted, and Prdx2 was detected in 2 peaks from 11–12 mL and 15–16 mL. Fractions 15–16 were pooled and retained for further experiments. The elution profile of Prdx2 in all 3 muscles was similar. The iden- tification of the primary protein was confirmed with liquid chromatography with tandem mass spectrometry. The purity of Prdx2 off the final Superose-12 column was approximately 33%, 52%, and 47% pure in the diaphragm, psoas major, and longissimus lumborum, respectively. This is the first report of a method to partially purify Prdx2 from skeletal muscle
Review of Postmortem Protein Oxidation in Skeletal Muscle and the Role of the Peroxiredoxin Family of Endogenous Antioxidants
The development of fresh meat quality is dictated by biochemical changes during the perimortem and postmortem period. Lipid and protein oxidation in postmortem skeletal muscle and meat products is detrimental to product quality. The mechanisms that influence lipid and protein oxidation in fresh meat remain unelucidated. Peroxiredoxins are thiol-specific antioxidant proteins that are highly reactive and abundant and may be involved in limiting oxidation early postmortem. This review aims to provide a background on oxidation in skeletal muscle, peroxiredoxins, a summary of proteomic experiments associating peroxiredoxins and meat quality, and the importance of context from proteomic methods and results. Additional controlled experiments considering the cellular conditions of postmortem skeletal muscle are necessary to further understand the contribution of peroxiredoxins to fresh meat quality development
Bird-biting mosquitoes on farms in southern England
Mosquitoes that blood-feed on avian hosts are important vectors of many arthropod-borne viruses (arboviruses). In Europe, these include West Nile virus (WNV), Usutu virus (USUTV) and Sindbis virus. These are all maintained in enzootic bird-mosquito-bird cycles and are important veterinary and medical threats to the UK. Principally, veterinary concerns lie with the risks to domestic animals, such as the incidental spillover infection of horses with WNV which may lead to serious neurological sequelae. Wildlife may also be affected, with certain wild birds being highly susceptible to infection and death with USUTV, although poultry are less susceptible. To date, UK surveillance for these viruses has not yielded evidence of active virus transmission although serological evidence has been reported
Spatial and temporal variation in foraging of breeding red‐throated divers
Differing environmental conditions can have profound effects on many behaviours in animals, especially where species have large geographic ranges. Seasonal changes or progression through life history stages impose differential constraints, leading to changes in behaviours. Furthermore, species which show flexibility in behaviours, may have a higher capacity to adapt to anthropogenic-induced changes to their environment. The red-throated diver (RTD) is an aquatic bird, that is able to forage in both freshwater and marine environments, though little else is known about its behaviours and its capacity to adapt to different environmental conditions. Here, we use time-depth recorders and saltwater immersion loggers to examine the foraging behaviour of RTDs from three regions across northwest Europe. We found that in the breeding season, birds from two regions (Iceland and Scotland) foraged in the marine environment, while birds from Finland, foraged predominantly in freshwater. Most of the differences in diving characteristics were at least partly explained by differences in foraging habitat. Additionally, while time spent foraging did not change through the breeding season, dives generally became more pelagic and less benthic over the season, suggesting RTDs either switched prey or followed vertical prey movements, rather than increasing foraging effort. There was a preference for foraging in daylight over crepuscular hours, with a stronger effect at two of the three sites. Overall, we provide the first investigation of RTD foraging and diving behaviour from multiple geographic regions and demonstrate variation in foraging strategies in this generalist aquatic predator, most likely due to differences in their local environment.Peer reviewe
Taxonomic shifts in arbuscular mycorrhizal fungal communities with shade and soil nitrogen across conventionally managed and organic coffee agroecosystems
The composition of arbuscular mycorrhizal fungal (AMF) communities should reflect not only responses to host and soil environments, but also differences in functional roles and costs vs. benefits among arbuscular mycorrhizal fungi. The coffee agroecosystem allows exploration of the effects of both light and soil fertility on AMF communities, because of the variation in shade and soil nutrients farmers generate through field management. We used high-throughput ITS2 sequencing to characterize the AMF communities of coffee roots in 25 fields in Costa Rica that ranged from organic management with high shade and no chemical fertilizers to conventionally managed fields with minimal shade and high N fertilization, and examined relationships between AMF communities and soil and shade parameters with partial correlations, NMDS, PERMANOVA, and partial least squares analysis. Gigasporaceae and Acaulosporaceae dominated coffee AMF communities in terms of relative abundance and richness, respectively. Gigasporaceae richness was greatest in conventionally managed fields, while Glomeraceae richness was greatest in organic fields. While total AMF richness and root colonization did not differ between organic and conventionally managed fields, AMF community composition did; these differences were correlated with soil nitrate and shade. OTUs differing in relative abundance between conventionally managed and organic fields segregated into four groups: Gigasporaceae associated with high light and nitrate availability, Acaulosporaceae with high light and low nitrate availability, Acaulosporaceae and a single relative of Rhizophagus fasciculatus with shade and low nitrate availability, and Claroideoglomus/Glomus with conventionally managed fields but uncorrelated with shade and soil variables. The association of closely related taxa with similar shade and light availabilities is consistent with phylogenetic trait conservatism in AM fungi
Nesprin-2 interacts with meckelin and mediates ciliogenesis via remodelling of the actin cytoskeleton.
addresses: Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.notes: PMCID: PMC2909318types: Journal Article; Research Support, Non-U.S. Gov'tCopyright © 2009 Company of Biologists.Meckel-Gruber syndrome (MKS) is a severe autosomal recessively inherited disorder caused by mutations in genes that encode components of the primary cilium and basal body. Here we show that two MKS proteins, MKS1 and meckelin, that are required for centrosome migration and ciliogenesis interact with actin-binding isoforms of nesprin-2 (nuclear envelope spectrin repeat protein 2, also known as Syne-2 and NUANCE). Nesprins are important scaffold proteins for maintenance of the actin cytoskeleton, nuclear positioning and nuclear-envelope architecture. However, in ciliated-cell models, meckelin and nesprin-2 isoforms colocalized at filopodia prior to the establishment of cell polarity and ciliogenesis. Loss of nesprin-2 and nesprin-1 shows that both mediate centrosome migration and are then essential for ciliogenesis, but do not otherwise affect apical-basal polarity. Loss of meckelin (by siRNA and in a patient cell-line) caused a dramatic remodelling of the actin cytoskeleton, aberrant localization of nesprin-2 isoforms to actin stress-fibres and activation of RhoA signalling. These findings further highlight the important roles of the nesprins during cellular and developmental processes, particularly in general organelle positioning, and suggest that a mechanistic link between centrosome positioning, cell polarity and the actin cytoskeleton is required for centrosomal migration and is essential for early ciliogenesis
Birth characteristics and childhood carcinomas
BACKGROUND: Carcinomas in children are rare and have not been well studied. METHODS: We conducted a population-based case–control study and examined associations between birth characteristics and childhood carcinomas diagnosed from 28 days to 14 years during 1980–2004 using pooled data from five states (NY, WA, MN, TX, and CA) that linked their birth and cancer registries. The pooled data set contained 57 966 controls and 475 carcinoma cases, including 159 thyroid and 126 malignant melanoma cases. We used unconditional logistic regression to calculate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: White compared with ‘other' race was positively associated with melanoma (OR=3.22, 95% CI 1.33–8.33). Older maternal age increased the risk for melanoma (OR(per 5-year age increase)=1.20, 95% CI 1.00–1.44), whereas paternal age increased the risk for any carcinoma (OR=1.10(per 5-year age increase), 95% CI 1.01–1.20) and thyroid carcinoma (OR(per 5-year age increase)=1.16, 95% CI 1.01–1.33). Gestational age <37 vs 37–42 weeks increased the risk for thyroid carcinoma (OR=1.87, 95% CI 1.07–3.27). Plurality, birth weight, and birth order were not significantly associated with childhood carcinomas. CONCLUSION: This exploratory study indicates that some birth characteristics including older parental age and low gestational age may be related to childhood carcinoma aetiology
- …