6 research outputs found

    Cosmic-ray observations of the heliosphere with the PAMELA experiment

    No full text
    The PAMELA experiment is a multi-purpose apparatus built around a permanent magnet spectrometer, with the main goal of studying in detail the antiparticle component of cosmic rays. The apparatus will be carried in space by means of a Russian satellite, due to launch in 2005, for a three year-long mission. The characteristics of the detectors composing the instrument, alongside the long lifetime of the mission and the orbital characteristics of the satellite, will allow to address several items of cosmic-ray physics. In this paper, we will focus on the solar and heliospheric observation capabilities of PAMELA. (c) 2005 Published by Elsevier Ltd on behalf of COSPAR

    Space qualification tests of the PAMELA instrument

    No full text
    PAMELA is a satellite-borne experiment which will measure the antiparticle component of cosmic rays over an extended energy range and with unprecedented accuracy. The apparatus consists of a permanent magnetic spectrometer equipped with a double-sided silicon microstrip tracking system and surrounded by a scintillator anticoincidence system. A silicon-tungsten imaging calorimeter, complemented by a scintillator shower tail catcher, and a transition radiation detector perform the particle identification task. Fast scintillators are used for Time-of-Flight measurements and to provide the primary trigger. A neutron detector is finally provided to extend the range of particle measurements to the TeV region. PAMELA will fly on-board of the Resurs-DKI satellite, which will be put into a semi-polar orbit in 2005 by a Soyuz rocket. We give a brief review of the scientific issues of the mission and report about the status of the experiment few months before the launch. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved

    Space qualification tests of the PAMELA instrument RID G-6769-2011

    No full text
    PAMELA is a satellite-borne experiment which will measure the antiparticle component of cosmic rays over an extended energy range and with unprecedented accuracy. The apparatus consists of a permanent magnetic spectrometer equipped with a double-sided silicon microstrip tracking system and surrounded by a scintillator anticoincidence system. A silicon-tungsten imaging calorimeter, complemented by a scintillator shower tail catcher, and a transition radiation detector perform the particle identification task. Fast scintillators are used for Time-of-Flight measurements and to provide the primary trigger. A neutron detector is finally provided to extend the range of particle measurements to the TeV region. PAMELA will fly on-board of the Resurs-DKI satellite, which will be put into a semi-polar orbit in 2005 by a Soyuz rocket. We give a brief review of the scientific issues of the mission and report about the status of the experiment few months before the launch. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved

    Ion Implantation

    No full text
    corecore