41 research outputs found

    Doctor can I buy a new kidney? I've heard it isn't forbidden: what is the role of the nephrologist when dealing with a patient who wants to buy a kidney?

    Get PDF
    Organ trafficking is officially banned in several countries and by the main Nephrology Societies. However, this practice is widespread and is allowed or tolerated in many countries, hence, in the absence of a universal law, the caregiver may be asked for advice, placing him/her in a difficult balance between legal aspects, moral principles and ethical judgments. In spite of the Istanbul declaration, which is a widely shared position statement against organ trafficking, the controversy on mercenary organ donation is still open and some experts argue against taking a negative stance. In the absence of clear evidence showing the clinical disadvantages of mercenary transplantation compared to chronic dialysis, self-determination of the patient (and, with several caveats, of the donor) may conflict with other ethical principles, first of all non-maleficence. The present paper was drawn up with the participation of the students, as part of the ethics course at our medical school. It discusses the situation in which the physician acts as a counselor for the patient in the way of a sort of “reverse” informed consent, in which the patient asks advice regarding a complex personal decision, and includes a peculiar application of the four principles (beneficence, non-maleficence, justice and autonomy) to the donor and recipient parties

    Peripheral Chemoreflex and Baroreflex Interactions in Cardiovascular Regulation in Humans

    No full text
    We tested the hypothesis that activation of peripheral chemoreceptors with acute isocapnic hypoxia resets arterial baroreflex control of both heart rate and sympathetic vasoconstrictor outflow to higher pressures, resulting in increased heart rate and muscle sympathetic nerve activity without changes in baroreflex sensitivity. We further hypothesized that this resetting would not occur during isocapnic hyperpnoea at the same breathing rate and depth as during isocapnic hypoxia. In 12 healthy, non-smoking, normotensive subjects (6 women, 6 men, 19-36 years), we assessed baroreflex control of heart rate and muscle sympathetic nerve activity using the modified Oxford technique during normoxia, isocapnic hyperpnoea, and isocapnic hypoxia (85 % arterial O2 saturation). While isocapnic hyperpnoea did not alter heart rate, arterial pressure, or sympathetic outflow, hypoxia increased heart rate from 61.9 ± 1.8 to 74.7 ± 2.7 beats min−1 (P < 0.05), increased mean arterial pressure from 97.4 ± 2.0 to 103.9 ± 3.3 mmHg (P < 0.05), and increased sympathetic activity 22 ± 13 % relative to normoxia and 72 ± 21 % (P < 0.05) relative to hyperpnoea alone. The sensitivity for baroreflex control of both heart rate and sympathetic activity was not altered by either hypoxia or hyperpnoea. Thus, it appears that acute activation of peripheral chemoreceptors with isocapnic hypoxia resets baroreflex control of both heart rate and sympathetic activity to higher pressures without changes in baroreflex sensitivity. Furthermore, these effects appear largely independent of breathing rate and tidal volume
    corecore