1,017 research outputs found

    Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs

    Full text link
    A theoretical study of photonic bands for one-dimensional (1D) lattices embedded in planar waveguides with strong refractive index contrast is presented. The approach relies on expanding the electromagnetic field on the basis of guided modes of an effective waveguide, and on treating the coupling to radiative modes by perturbation theory. Photonic mode dispersion, gap maps, and intrinsic diffraction losses of quasi-guided modes are calculated for the case of self-standing membranes as well as for Silicon-on-Insulator structures. Photonic band gaps in a waveguide are found to depend strongly on the core thickness and on polarization, so that the gaps for transverse electric and transverse magnetic modes most often do not overlap. Radiative losses of quasi-guided modes above the light line depend in a nontrivial way on structure parameters, mode index and wavevector. The results of this study may be useful for the design of integrated 1D photonic structures with low radiative losses.Comment: 9 pages, 8 figures, submitted to Physical Review

    Statistics of surface divergence and their relation to air-water gas transfer velocity

    Get PDF
    Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence

    Extended sedimentation profiles in charged colloids: the gravitational length, entropy, and electrostatics

    Full text link
    We have measured equilibrium sedimentation profiles in a colloidal model system with confocal microscopy. By tuning the interactions, we have determined the gravitational length in the limit of hard-sphere-like interactions, and using the same particles, tested a recent theory [R.van Roij, J. Phys. Cond. Mat. 15, S3569, (2003)], which predicts a significantly extended sedimentation profile in the case of charged colloids with long-ranged repulsions, due to a spontaneously formed macroscopic electric field. For the hard-sphere-like system we find that the gravitational length matches that expected. By tuning the buoyancy of the colloidal particles we have shown that a mean field hydrostatic equilibrium description even appears to hold in the case that the colloid volume fraction changes significantly on the length scale of the particle size. The extended sedimentation profiles of the colloids with long-ranged repulsions are well-described by theory. Surprisingly, the theory even seems to hold at concentrations where interactions between the colloids, which are not modeled explicitly, play a considerable role
    corecore