5 research outputs found

    SAIE Framework: Support Alone Isn't Enough -- Advancing LLM Training with Adversarial Remarks

    Full text link
    Large Language Models (LLMs) can justify or criticize their predictions through discussion with other models or humans, thereby enhancing their intrinsic understanding of instances. While proactive discussions enhance performance, this approach is currently limited to the inference phase. In this context, we posit a hypothesis: learning interactive discussions during training can improve understanding for the instances in the training step and proficiency in logical/critical thinking ability and verbalized expression of the model in the inference step. Our proposed SAIE training method involves both supportive and adversarial discussions between the learner and partner models. The learner model receives a remark from the partner through the discussion, and the parameters of the learner model are then updated based on this remark. That is, the teacher signal dynamically adjusts in response to the evolving model output throughout the training step. By bolstering the capacity for discussion and comprehension of instances, our experiments across datasets, including GSM8K, CommonsenseQA, and MMLU, reveal that models fine-tuned with our method consistently surpass those trained with standard fine-tuning techniques. Moreover, our approach demonstrates superior performance in multi-agent inference scenarios, boosting the models' reasoning abilities at the inference step.Comment: Work in progres

    Exploring Effectiveness of GPT-3 in Grammatical Error Correction: A Study on Performance and Controllability in Prompt-Based Methods

    Full text link
    Large-scale pre-trained language models such as GPT-3 have shown remarkable performance across various natural language processing tasks. However, applying prompt-based methods with GPT-3 for Grammatical Error Correction (GEC) tasks and their controllability remains underexplored. Controllability in GEC is crucial for real-world applications, particularly in educational settings, where the ability to tailor feedback according to learner levels and specific error types can significantly enhance the learning process. This paper investigates the performance and controllability of prompt-based methods with GPT-3 for GEC tasks using zero-shot and few-shot setting. We explore the impact of task instructions and examples on GPT-3's output, focusing on controlling aspects such as minimal edits, fluency edits, and learner levels. Our findings demonstrate that GPT-3 could effectively perform GEC tasks, outperforming existing supervised and unsupervised approaches. We also showed that GPT-3 could achieve controllability when appropriate task instructions and examples are given.Comment: Accepted in BEA 202
    corecore