29 research outputs found

    A description of drift chambers used in a Fermilab experiment

    Full text link
    We give a detailed description of the drift chamber system used in a charm search at Fermilab. All important aspects of design and performance are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/21645/1/0000029.pd

    Annual progress report for the period June 1, 1973--May 31, 1974

    No full text

    Annual progress report, Task A, for June 1, 1972--May 31, 1973

    No full text

    Lineage marker synchrony in hematopoietic genealogies refutes the PU.1/GATA1 toggle switch paradigm.

    Get PDF
    Molecular regulation of cell fate decisions underlies health and disease. To identify molecules that are active or regulated during a decision, and not before or after, the decision time point is crucial. However, cell fate markers are usually delayed and the time of decision therefore unknown. Fortunately, dividing cells induce temporal correlations in their progeny, which allow for retrospective inference of the decision time point. We present a computational method to infer decision time points from correlated marker signals in genealogies and apply it to differentiating hematopoietic stem cells. We find that myeloid lineage decisions happen generations before lineage marker onsets. Inferred decision time points are in agreement with data from colony assay experiments. The levels of the myeloid transcription factor PU.1 do not change during, but long after the predicted lineage decision event, indicating that the PU.1/GATA1 toggle switch paradigm cannot explain the initiation of early myeloid lineage choice

    fastER: A user-friendly tool for ultrafast and robust cell segmentation in large-scale microscopy.

    No full text
    Motivation: Quantitative large-scale cell microscopy is widely used in biological and medical research. Such experiments produce huge amounts of image data and thus require automated analysis. However, automated detection of cell outlines (cell segmentation) is typically challenging due to, e.g., high cell densities, cell-to-cell variability and low signal-to-noise ratios. Results: Here, we evaluate accuracy and speed of various state-of-the-art approaches for cell segmentation in light microscopy images using challenging real and synthetic image data. The results vary between datasets and show that the tested tools are either not robust enough or computationally expensive, thus limiting their application to large-scale experiments. We therefore developed fastER, a trainable tool that is orders of magnitude faster while producing state-of-the-art segmentation quality. It supports various cell types and image acquisition modalities, but is easy-to-use even for non-experts: it has no parameters and can be adapted to specific image sets by interactively labelling cells for training. As a proof of concept, we segment and count cells in over 200,000 brightfield images (1388 × 1040 pixels each) from a six day time-lapse microscopy experiment; identification of over 46,000,000 single cells requires only about two and a half hours on a desktop computer
    corecore