2,190 research outputs found
Effect of Gravitational Lensing on Measurements of the Sunyaev-Zel'dovich Effect
The Sunyaev-Zel'dovich (SZ) effect of a cluster of galaxies is usually
measured after background radio sources are removed from the cluster field.
Gravitational lensing by the cluster potential leads to a systematic deficit in
the residual intensity of unresolved sources behind the cluster core relative
to a control field far from the cluster center. As a result, the measured
decrement in the Rayleigh-Jeans temperature of the cosmic microwave background
is overestimated. We calculate the associated systematic bias which is
inevitably introduced into measurements of the Hubble constant using the SZ
effect. For the cluster A2218, we find that observations at 15 GHz with a beam
radius of 0'.4 and a source removal threshold of 100 microJy underestimate the
Hubble constant by 6-10%. If the profile of the gas pressure declines more
steeply with radius than that of the dark matter density, then the ratio of
lensing to SZ decrements increases towards the outer part of the cluster.Comment: 11 pages, 3 figures, submitted to ApJ
Distortion of Gravitational-Wave Packets Due to their Self-Gravity
When a source emits a gravity-wave (GW) pulse over a short period of time,
the leading edge of the GW signal is redshifted more than the inner boundary of
the pulse. The GW pulse is distorted by the gravitational effect of the
self-energy residing in between these shells. We illustrate this distortion for
GW pulses from the final plunge of black hole (BH) binaries, leading to the
evolution of the GW profile as a function of the radial distance from the
source. The distortion depends on the total GW energy released and the duration
of the emission, scaled by the total binary mass, M. The effect should be
relevant in finite box simulations where the waveforms are extracted within a
radius of <~ 100M. For characteristic emission parameters at the final plunge
between binary BHs of arbitrary spins, this effect could distort the simulated
GW templates for LIGO and LISA by a fraction of 0.001. Accounting for the wave
distortion would significantly decrease the waveform extraction errors in
numerical simulations.Comment: accepted for publication in Physical Review
Effects of Dust on Gravitational Lensing by Spiral Galaxies
Gravitational lensing of an optical QSO by a spiral galaxy is often
counteracted by dust obscuration, since the line-of-sight to the QSO passes
close to the center of the galactic disk. The dust in the lens is likely to be
correlated with neutral hydrogen, which in turn should leave a Lyman-alpha
absorption signature on the QSO spectrum. We use the estimated dust-to-gas
ratio of the Milky-Way galaxy as a mean and allow a spread in its values to
calculate the effects of dust on lensing by low redshift spiral galaxies. Using
a no-evolution model for spirals at z<1 we find (in Lambda=0 cosmologies) that
the magnification bias due to lensing is stronger than dust obscuration for QSO
samples with a magnitude limit B<16. The density parameter of neutral hydrogen,
Omega_HI, is overestimated in such samples and is underestimated for fainter
QSOs.Comment: 18 pages, 4 figures, ApJ, in pres
Functions of several Cayley-Dickson variables and manifolds over them
Functions of several octonion variables are investigated and integral
representation theorems for them are proved. With the help of them solutions of
the -equations are studied. More generally functions of
several Cayley-Dickson variables are considered. Integral formulas of the
Martinelli-Bochner, Leray, Koppelman type used in complex analysis here are
proved in the new generalized form for functions of Cayley-Dickson variables
instead of complex. Moreover, analogs of Stein manifolds over Cayley-Dickson
graded algebras are defined and investigated
Dynamical Mass Estimates of Large-Scale Filaments in Redshift Surveys
We propose a new method to measure the mass of large-scale filaments in
galaxy redshift surveys. The method is based on the fact that the mass per unit
length of isothermal filaments depends only on their transverse velocity
dispersion. Filaments that lie perpendicular to the line of sight may therefore
have their mass per unit length measured from their thickness in redshift
space. We present preliminary tests of the method and find that it predicts the
mass per unit length of filaments in an N-body simulation to an accuracy of
~35%. Applying the method to a select region of the Perseus-Pisces supercluster
yields a mass-to-light ratio M/L_B around 460h in solar units to within a
factor of two. The method measures the mass-to-light ratio on length scales of
up to 50h^(-1) Mpc and could thereby yield new information on the behavior of
the dark matter on mass scales well beyond that of clusters of galaxies.Comment: 21 pages, LaTeX with 6 figures included. Submitted to Ap
Is a Classical Language Adequate in Assessing the Detectability of the Redshifted 21cm Signal from the Early Universe?
The classical radiometer equation is commonly used to calculate the
detectability of the 21cm emission by diffuse cosmic hydrogen at high
redshifts. However, the classical description is only valid in the regime where
the occupation number of the photons in phase space is much larger than unity
and they collectively behave as a classical electromagnetic field. At redshifts
z<20, the spin temperature of the intergalactic gas is dictated by the
radiation from galaxies and the brightness temperature of the emitting gas is
in the range of mK, independently from the existence of the cosmic microwave
background. In regions where the observed brightness temperature of the 21cm
signal is smaller than the observed photon energy, of 68/(1+z) mK, the
occupation number of the signal photons is smaller than unity. Neverethless,
the radiometer equation can still be used in this regime because the weak
signal is accompanied by a flood of foreground photons with a high occupation
number (involving the synchrotron Galactic emission and the cosmic microwave
background). As the signal photons are not individually distinguishable, the
combined signal+foreground population of photons has a high occupation number,
thus justifying the use of the radiometer equation.Comment: 4 pages, Accepted for publication in JCA
A Size of ~10 Mpc for the Ionized Bubbles at the End of Cosmic Reionization
The first galaxies to appear in the universe at redshifts z>20 created
ionized bubbles in the intergalactic medium of neutral hydrogen left over from
the Big-Bang. It is thought that the ionized bubbles grew with time, surrounded
clusters of dwarf galaxies and eventually overlapped quickly throughout the
universe over a narrow redshift interval near z~6. This event signaled the end
of the reionization epoch when the universe was a billion years old. Measuring
the hitherto unknown size distribution of the bubbles at their final overlap
phase is a focus of forthcoming observational programs aimed at highly
redshifted 21cm emission from atomic hydrogen. Here we show that the combined
constraints of cosmic variance and causality imply an observed bubble size at
the end of the overlap epoch of ~10 physical Mpc, and a scatter in the observed
redshift of overlap along different lines-of-sight of ~0.15. This scatter is
consistent with observational constraints from recent spectroscopic data on the
farthest known quasars. Our novel result implies that future radio experiments
should be tuned to a characteristic angular scale of ~0.5 degrees and have a
minimum frequency band-width of ~8 MHz for an optimal detection of 21cm flux
fluctuations near the end of reionization.Comment: Accepted for publication in Nature. Press embargo until publishe
Gravitational Microlensing of Gamma-Ray Burst Afterglows by Single and Binary Stars
We calculate the magnification light curves due to stellar microlensing of
gamma-ray burst (GRB) afterglows. A GRB source appears on the sky as a thin
ring which expands faster than the speed of light and is maximally magnified as
it crosses the lens caustics. While a single star lens produces a single peak
in the magnification light curve, binary star lenses may produce multiple
peaks. The shape of the magnification light curve provides invaluable
information on the surface brightness distribution of the afterglow photosphere
on sub micro-arcsecond scales. We find that all afterglows are likely to show
variability at the level of a few percent about a year following the explosion,
due to stars which are separated by tens of Einstein radii from their
line-of-sight.Comment: slightly modified version, 14 pages, 4 figures, ApJL, in pres
Constraining Parity Violation in Gravity with Measurements of Neutron-Star Moments of Inertia
Neutron stars are sensitive laboratories for testing general relativity,
especially when considering deviations where velocities are relativistic and
gravitational fields are strong. One such deviation is described by dynamical,
Chern-Simons modified gravity, where the Einstein-Hilbert action is modified
through the addition of the gravitational parity-violating Pontryagin density
coupled to a field. This four-dimensional effective theory arises naturally
both in perturbative and non-perturbative string theory, loop quantum gravity,
and generic effective field theory expansions. We calculate here Chern-Simons
modifications to the properties and gravitational fields of slowly spinning
neutron stars. We find that the Chern-Simons correction affects only the
gravitomagnetic sector of the metric to leading order, thus introducing
modifications to the moment of inertia but not to the mass-radius relation. We
show that an observational determination of the moment of inertia to an
accuracy of 10%, as is expected from near-future observations of the double
pulsar, will place a constraint on the Chern-Simons coupling constant of
\xi^{1/4} < 5 km, which is at least three-orders of magnitude stronger than the
previous strongest bound.Comment: 14 pages, 6 figures, replaced with version accepted for publication
in Phys. Rev.
The Formation of the First Low-Mass Stars From Gas With Low Carbon and Oxygen Abundances
The first stars in the Universe are predicted to have been much more massive
than the Sun. Gravitational condensation accompanied by cooling of the
primordial gas due to molecular hydrogen, yields a minimum fragmentation scale
of a few hundred solar masses. Numerical simulations indicate that once a gas
clump acquires this mass, it undergoes a slow, quasi-hydrostatic contraction
without further fragmentation. Here we show that as soon as the primordial gas
- left over from the Big Bang - is enriched by supernovae to a carbon or oxygen
abundance as small as ~0.01-0.1% of that found in the Sun, cooling by
singly-ionized carbon or neutral oxygen can lead to the formation of low-mass
stars. This mechanism naturally accommodates the discovery of solar mass stars
with unusually low (10^{-5.3} of the solar value) iron abundance but with a
high (10^{-1.3} solar) carbon abundance. The minimum stellar mass at early
epochs is partially regulated by the temperature of the cosmic microwave
background. The derived critical abundances can be used to identify those
metal-poor stars in our Milky Way galaxy with elemental patterns imprinted by
the first supernovae.Comment: 14 pages, 2 figures (appeared today in Nature
- …