352 research outputs found

    An interchangeable role for kainate and metabotropic glutamate receptors in the induction of rat hippocampal mossy fiber long-term potentiation in vivo

    Get PDF
    The roles of both kainate receptors (KARs) and metabotropic glutamate receptors (mGluRs) in mossy fiber long-term potentiation (MF-LTP) have been extensively studied in hippocampal brain slices, but the findings are controversial. In this study, we have addressed the roles of both mGluRs and KARs in MF-LTP in anesthetized rats. We found that MF-LTP could be induced in the presence of either GluK1-selective KAR antagonists or group I mGluR antagonists. However, LTP was inhibited when the group I mGluRs and the GluK1-KARs were simultaneously inhibited. Either mGlu1 or mGlu5 receptor activation is sufficient to induce this form of LTP as selective inhibition of either subtype alone, together with the inhibition of KARs, did not inhibit MF-LTP. These data suggest that mGlu1 receptors, mGlu5 receptors, and GluK1-KARs are all engaged during high-frequency stimulation, and that the activation of any one of these receptors alone is sufficient for the induction of MF-LTP in vivo. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc

    Rapid and accurate analysis of stem cell-derived extracellular vesicles with super resolution microscopy and live imaging

    Get PDF
    Extracellular vesicles (EVs) have prevalent roles in cancer biology and regenerative medicine. Conventional techniques for characterising EVs including electron microscopy (EM), nanoparticle tracking analysis (NTA) and tuneable resistive pulse sensing (TRPS), have been reported to produce high variability in particle count (EM) and poor sensitivity in detecting EVs below 50 nm in size (NTA and TRPS), making accurate and unbiased EV analysis technically challenging. This study introduces direct stochastic optical reconstruction microscopy (d-STORM) as an efficient and reliable characterisation approach for stem cell-derived EVs. Using a photo-switchable lipid dye, d-STORM imaging enabled rapid detection of EVs down to 20–30 nm in size with higher sensitivity and lower variability compared to EM, NTA and TRPS techniques. Imaging of EV uptake by live stem cells in culture further confirmed the potential of this approach for downstream cell biology applications and for the analysis of vesicle-based cell-cell communication

    Development and Field Validation of an Environmental DNA (eDNA) Assay for Invasive Clams of the Genus Corbicula

    Get PDF
    Early detection is imperative for successful control or eradication of invasive species, but many organisms are difficult to detect at the low abundances characteristic of recently introduced populations. Environmental DNA (eDNA) has emerged as a promising invasive species surveillance tool for freshwaters, owing to its high sensitivity to detect aquatic species even when scarce. We report here a new eDNA assay for the globally invasive Asian clam Corbicula fluminea (Müller, 1774), with field validation in large lakes of western North America. We identified a candidate primer pair for the Cytochrome c oxidase subunit 1 (COI) gene for C. fluminea. We tested it for specificity via qPCR assay against genomic DNA of the target species C. fluminea, and synthetic DNA gBlocks for other non-target species within and outside of the genus Corbicula. Our best identified primer amplifies a 208-bp fragment for C. fluminea and several closely related species within the genus, but was specific for these non-native Asian clams relative to native mollusks of western North America. We further evaluated this assay in application to eDNA water samples for the detection of C. fluminea from four lakes in California and Nevada, United States, where the species is known to occur (including Lake Tahoe) relative to seven lakes where it has never been observed. Our assay successfully detected C. fluminea in all four lakes with historic records for this species, and did not detect C. fluminea from the seven lakes without known populations. Further, the distribution of eDNA detections within Lake Tahoe generally matched the known, restricted distribution of C. fluminea in this large lake. We conclude from this successful field validation that our eDNA assay for C. fluminea will be useful for researchers and managers seeking to detect new introductions and potentially monitor population trends of this major freshwater invader and other closely related members of its genus

    Observable frequency shifts via spin-rotation coupling

    Get PDF
    The phase perturbation arising from spin-rotation coupling is developed as a natural extension of the celebrated Sagnac effect. Experimental evidence in support of this phase shift, however, has yet to be realized due to the exceptional sensitivity required. We draw attention to the relevance of a series of experiments establishing that circularly polarized light, upon passing through a rotating half-wave plate, is changed in frequency by twice the rotation rate. These experiments may be interpreted as demonstrating the role of spin-rotation coupling in inducing this frequency shift, thus providing direct empirical verification of the coupling of the photon helicity to rotation. A neutron interferometry experiment is proposed which would be sensitive to an analogous frequency shift for fermions. In this arrangement, polarized neutrons enter an interferometer containing two spin flippers, one of which is rotating while the other is held stationary. An observable beating in the transmitted neutron beam intensity is predicted.Comment: LaTeX, 15 pages with 4 PostScript figures, submitted to Phys. Lett.

    The Problem with Big Data: Operating on Smaller Datasets to Bridge the Implementation Gap

    Get PDF
    Big datasets have the potential to revolutionize public health. However, there is a mismatch between the political and scientific optimism surrounding big data and the public’s perception of its benefit. We suggest a systematic and concerted emphasis on developing models derived from smaller datasets to illustrate to the public how big data can produce tangible benefits in the long term. In order to highlight the immediate value of a small data approach, we produced a proof-of-concept model predicting hospital length of stay. The results demonstrate that existing small datasets can be used to create models that generate a reasonable prediction, facilitating health-care delivery. We propose that greater attention (and funding) needs to be directed toward the utilization of existing information resources in parallel with current efforts to create and exploit “big data.

    Rapid and accurate analysis of stem cell-derived extracellular vesicles with super resolution microscopy and live imaging

    Get PDF
    Extracellular vesicles (EVs) have prevalent roles in cancer biology and regenerative medicine. Conventional techniques for characterising EVs including electron microscopy (EM), nanoparticle tracking analysis (NTA) and tuneable resistive pulse sensing (TRPS), have been reported to produce high variability in particle count (EM) and poor sensitivity in detecting EVs below 50 nm in size (NTA and TRPS), making accurate and unbiased EV analysis technically challenging. This study introduces direct stochastic optical reconstruction microscopy (d-STORM) as an efficient and reliable characterisation approach for stem cell-derived EVs. Using a photo-switchable lipid dye, d-STORM imaging enabled rapid detection of EVs down to 20–30 nm in size with higher sensitivity and lower variability compared to EM, NTA and TRPS techniques. Imaging of EV uptake by live stem cells in culture further confirmed the potential of this approach for downstream cell biology applications and for the analysis of vesicle-based cell-cell communication

    Observation of Effective Pseudospin Scattering in ZrSiS

    Full text link
    3D Dirac semimetals are an emerging class of materials that possess topological electronic states with a Dirac dispersion in their bulk. In nodal-line Dirac semimetals, the conductance and valence bands connect along a closed path in momentum space, leading to the prediction of pseudospin vortex rings and pseudospin skyrmions. Here, we use Fourier transform scanning tunneling spectroscopy (FT-STS) at 4.5 K to resolve quasiparticle interference (QPI) patterns at single defect centers on the surface of the line nodal semimetal zirconium silicon sulfide (ZrSiS). Our QPI measurements show pseudospin conservation at energies close to the line node. In addition, we determine the Fermi velocity to be vF=2.65±0.10\hbar v_F = 2.65 \pm 0.10 eV {\AA} in the {\Gamma}-M direction ~300 meV above the Fermi energy EFE_F, and the line node to be ~140 meV above EFE_F. More importantly, we find that certain scatterers can introduce energy-dependent non-preservation of pseudospins, giving rise to effective scattering between states with opposite valley pseudospin deep inside valence and conduction bands. Further investigations of quasiparticle interference at the atomic level will aid defect engineering at the synthesis level, needed for the development of lower-power electronics via dissipationless electronic transport in the future

    ABA triblock copolymers: from controlled synthesis to controlled function

    Get PDF
    The ABA amphiphilic block copolymers, poly(hydroxyethyl methacrylate-hlock-methylphenylsilane-block-hydroxyethyl methacrylate) (PHEMA-PMPS-PHEMA) and poly[oligo(ethylene glycol) methyl ether methacrylate-block-methylphenylsilane-block-oligo(ethylene glycol). methyl ether methacrylate] (POEGMA-PMPS-POEGMA) were successfully synthesised via atom transfer radical polymerisation (ATRP). Macroinitiators suitable for the ATRP of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate were synthesised from the condensation reaction of alpha,omega-dihalopolymethylphenylsilane and 2'-hydroxyethyl 2-bromo-2-methylpropanoate. The copolymers were characterised using H-1 NMR and C-13 NMR spectroscopy and molecular weight characteristics were determined using size exclusion chromatography and H-1 NMR. The aggregation behaviour of some of the copolymers in water was studied using transmission and scanning electron microscopy and dynamic light scattering. These revealed the prevalent aggregate species to be micelles. Larger aggregates of 300-1000 nm diameter were also observed. The UV induced degradation of the aggregates was studied by UV-Vis spectroscopy. The thermal behaviour of selected copolymers was studied by differential scanning calorimetry and microphase separation of the two components was demonstrated

    Ionotropic glutamate receptors in GtoPdb v.2021.3

    Get PDF
    The ionotropic glutamate receptors comprise members of the NMDA (N-methyl-D-aspartate), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid) and kainate receptor classes, named originally according to their preferred, synthetic, agonist [35, 92, 155]. Receptor heterogeneity within each class arises from the homo-oligomeric, or hetero-oligomeric, assembly of distinct subunits into cation-selective tetramers. Each subunit of the tetrameric complex comprises an extracellular amino terminal domain (ATD), an extracellular ligand binding domain (LBD), 3 TM domains (M1, M3 and M4), a channel lining re-entrant 'p-loop' (M2) located between M1 and M3 and an intracellular carboxy- terminal domain (CTD) [99, 68, 107, 155, 82]. The X-ray structure of a homomeric ionotropic glutamate receptor (GluA2- see below) has recently been solved at 3.6Å resolution [143] and although providing the most complete structural information current available may not representative of the subunit arrangement of, for example, the heteromeric NMDA receptors [71]. It is beyond the scope of this supplement to discuss the pharmacology of individual ionotropic glutamate receptor isoforms in detail; such information can be gleaned from [35, 66, 31, 77, 42, 114, 24, 65, 155, 112, 113, 162]. Agents that discriminate between subunit isoforms are, where appropriate, noted in the tables and additional compounds that distinguish between receptor isoforms are indicated in the text below.The classification of glutamate receptor subunits has been re-addressed by NC-IUPHAR [28]. The scheme developed recommends a nomenclature for ionotropic glutamate receptor subunits that is adopted here.NMDA receptorsNMDA receptors assemble as obligate heteromers that may be drawn from GluN1, GluN2A, GluN2B, GluN2C, GluN2D, GluN3A and GluN3B subunits. Alternative splicing can generate eight isoforms of GluN1 with differing pharmacological properties. Various splice variants of GluN2B, 2C, 2D and GluN3A have also been reported. Activation of NMDA receptors containing GluN1 and GluN2 subunits requires the binding of two agonists, glutamate to the S1 and S2 regions of the GluN2 subunit and glycine to S1 and S2 regions of the GluN1 subunit [41, 25]. The minimal requirement for efficient functional expression of NMDA receptors in vitro is a di-heteromeric assembly of GluN1 and at least one GluN2 subunit variant, as a dimer of heterodimers arrangement in the extracellular domain [48, 99, 71]. However, more complex tri-heteromeric assemblies, incorporating multiple subtypes of GluN2 subunit, or GluN3 subunits, can be generated in vitro and occur in vivo. The NMDA receptor channel commonly has a high relative permeability to Ca2+ and is blocked, in a voltage-dependent manner, by Mg2+ such that at resting potentials the response is substantially inhibited.AMPA and Kainate receptorsAMPA receptors assemble as homomers, or heteromers, that may be drawn from GluA1, GluA2, GluA3 and GluA4 subunits. Transmembrane AMPA receptor regulatory proteins (TARPs) of class I (i.e. γ2, γ3, γ4 and γ8) act, with variable stoichiometry, as auxiliary subunits to AMPA receptors and influence their trafficking, single channel conductance gating and pharmacology (reviewed in [43, 103, 153, 64]). Functional kainate receptors can be expressed as homomers of GluK1, GluK2 or GluK3 subunits. GluK1-3 subunits are also capable of assembling into heterotetramers (e.g. GluK1/K2; [87, 119, 118]). Two additional kainate receptor subunits, GluK4 and GluK5, when expressed individually, form high affinity binding sites for kainate, but lack function, but can form heteromers when expressed with GluK1-3 subunits (e.g. GluK2/K5; reviewed in [119, 65, 118]). Kainate receptors may also exhibit 'metabotropic' functions [87, 131]. As found for AMPA receptors, kainate receptors are modulated by auxiliary subunits (Neto proteins, [118, 88]). An important function difference between AMPA and kainate receptors is that the latter require extracellular Na+ and Cl- for their activation [11, 120]. RNA encoding the GluA2 subunit undergoes extensive RNA editing in which the codon encoding a p-loop glutamine residue (Q) is converted to one encoding arginine (R). This Q/R site strongly influences the biophysical properties of the receptor. Recombinant AMPA receptors lacking RNA edited GluA2 subunits are: (1) permeable to Ca2+; (2) blocked by intracellular polyamines at depolarized potentials causing inward rectification (the latter being reduced by TARPs); (3) blocked by extracellular argiotoxin and joro spider toxins and (4) demonstrate higher channel conductances than receptors containing the edited form of GluA2 [139, 63]. GluK1 and GluK2, but not other kainate receptor subunits, are similarly edited and broadly similar functional characteristics apply to kainate receptors lacking either an RNA edited GluK1, or GluK2, subunit [87, 118]. Native AMPA and kainate receptors displaying differential channel conductances, Ca2+ permeabilites and sensitivity to block by intracellular polyamines have been identified [30, 63, 91]. GluA1-4 can exist as two variants generated by alternative splicing (termed ‘flip’ and ‘flop’) that differ in their desensitization kinetics and their desensitization in the presence of cyclothiazide which stabilises the nondesensitized state. TARPs also stabilise the non-desensitized conformation of AMPA receptors and facilitate the action of cyclothiazide [103]. Splice variants of GluK1-3 also exist which affects their trafficking [87, 118]

    Ionotropic glutamate receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The ionotropic glutamate receptors comprise members of the NMDA (N-methyl-D-aspartate), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid) and kainate receptor classes, named originally according to their preferred, synthetic, agonist [34, 87, 147]. Receptor heterogeneity within each class arises from the homo-oligomeric, or hetero-oligomeric, assembly of distinct subunits into cation-selective tetramers. Each subunit of the tetrameric complex comprises an extracellular amino terminal domain (ATD), an extracellular ligand binding domain (LBD), three transmembrane domains composed of three membrane spans (M1, M3 and M4), a channel lining re-entrant ‘p-loop’ (M2) located between M1 and M3 and an intracellular carboxy- terminal domain (CTD) [94, 66, 102, 147, 77]. The X-ray structure of a homomeric ionotropic glutamate receptor (GluA2 – see below) has recently been solved at 3.6Å resolution [135] and although providing the most complete structural information current available may not representative of the subunit arrangement of, for example, the heteromeric NMDA receptors [69]. It is beyond the scope of this supplement to discuss the pharmacology of individual ionotropic glutamate receptor isoforms in detail; such information can be gleaned from [34, 65, 30, 73, 41, 108, 23, 64, 147, 106, 107, 152]. Agents that discriminate between subunit isoforms are, where appropriate, noted in the tables and additional compounds that distinguish between receptor isoforms are indicated in the text below.The classification of glutamate receptor subunits has been re-addressed by NC-IUPHAR [27]. The scheme developed recommends a nomenclature for ionotropic glutamate receptor subunits that is adopted here.NMDA receptorsNMDA receptors assemble as obligate heteromers that may be drawn from GluN1, GluN2A, GluN2B, GluN2C, GluN2D, GluN3A and GluN3B subunits. Alternative splicing can generate eight isoforms of GluN1 with differing pharmacological properties. Various splice variants of GluN2B, 2C, 2D and GluN3A have also been reported. Activation of NMDA receptors containing GluN1 and GluN2 subunits requires the binding of two agonists, glutamate to the S1 and S2 regions of the GluN2 subunit and glycine to S1 and S2 regions of the GluN1 subunit [40, 24]. The minimal requirement for efficient functional expression of NMDA receptors in vitro is a di-heteromeric assembly of GluN1 and at least one GluN2 subunit variant, as a dimer of heterodimers arrangement in the extracellular domain [47, 94, 69]. However, more complex tri-heteromeric assemblies, incorporating multiple subtypes of GluN2 subunit, or GluN3 subunits, can be generated in vitro and occur in vivo. The NMDA receptor channel commonly has a high relative permeability to Ca2+ and is blocked, in a voltage-dependent manner, by Mg2+ such that at resting potentials the response is substantially inhibited.AMPA and Kainate receptorsAMPA receptors assemble as homomers, or heteromers, that may be drawn from GluA1, GluA2, GluA3 and GluA4 subunits. Transmembrane AMPA receptor regulatory proteins (TARPs) of class I (i.e. γ2, γ3, γ4 and γ8) act, with variable stoichiometry, as auxiliary subunits to AMPA receptors and influence their trafficking, single channel conductance gating and pharmacology (reviewed in [42, 98, 145, 63]). Functional kainate receptors can be expressed as homomers of GluK1, GluK2 or GluK3 subunits. GluK1-3 subunits are also capable of assembling into heterotetramers (e.g. GluK1/K2; [82, 113, 112]). Two additional kainate receptor subunits, GluK4 and GluK5, when expressed individually, form high affinity binding sites for kainate, but lack function, but can form heteromers when expressed with GluK1-3 subunits (e.g. GluK2/K5; reviewed in [113, 64, 112]). Kainate receptors may also exhibit ‘metabotropic’ functions [82, 123]. As found for AMPA receptors, kainate receptors are modulated by auxiliary subunits (Neto proteins, [112, 83]). An important function difference between AMPA and kainate receptors is that the latter require extracellular Na+ and Cl- for their activation [11, 114]. RNA encoding the GluA2 subunit undergoes extensive RNA editing in which the codon encoding a p-loop glutamine residue (Q) is converted to one encoding arginine (R). This Q/R site strongly influences the biophysical properties of the receptor. Recombinant AMPA receptors lacking RNA edited GluA2 subunits are: (1) permeable to Ca2+; (2) blocked by intracellular polyamines at depolarized potentials causing inward rectification (the latter being reduced by TARPs); (3) blocked by extracellular argiotoxin and Joro spider toxins and (4) demonstrate higher channel conductances than receptors containing the edited form of GluA2 [131, 62]. GluK1 and GluK2, but not other kainate receptor subunits, are similarly edited and broadly similar functional characteristics apply to kainate receptors lacking either an RNA edited GluK1, or GluK2, subunit [82, 112]. Native AMPA and kainate receptors displaying differential channel conductances, Ca2+ permeabilites and sensitivity to block by intracellular polyamines have been identified [29, 62, 86]. GluA1-4 can exist as two variants generated by alternative splicing (termed ‘flip’ and ‘flop’) that differ in their desensitization kinetics and their desensitization in the presence of cyclothiazide which stabilises the nondesensitized state. TARPs also stabilise the non-desensitized conformation of AMPA receptors and facilitate the action of cyclothiazide [98]. Splice variants of GluK1-3 also exist which affects their trafficking [82, 112]
    corecore