30 research outputs found
Results from CHIPIX-FE0, a Small Scale Prototype of a New Generation Pixel Readout ASIC in 65nm CMOS for HL-LHC
CHIPIX65-FE0 is a readout ASIC in CMOS 65nm designed by the CHIPIX65 project for a pixel detector at the HL-LHC, consisting of a matrix of 64x64 pixels of dimension 50x50 ÎŒm2. It is fully functional, can work at low thresholds down to 250eâ and satisfies all the specifications. Results confirm low-noise, fast performance of both the synchronous and asynchronous front-end in a complex digital chip. CHIPIX65-FE0 has been irradiated up to 600 Mrad and is only marginally affected on analog performance. Further irradiation to 1 Grad will be performed. Bump bonding to silicon sensors is now on going and detailed measurements will be presented.
The HL-LHC accelerator will constitute a new frontier for particle physics after year 2024. One major experimental challenge resides in the inner tracking detectors, measuring particle position: here the dimension of the sensitive area (pixel) has to be scaled down with respect to LHC detectors.
This paper describes the results obtained by CHIPIX65-FE0, a readout ASIC in CMOS 65nm designed by the CHIPIX65 project as small-scale demonstrator for a pixel detector at the HL-LHC. It consists of a matrix of 64x64 pixels of dimension 50x50 um2 pixels and contains several pieces that are included in RD53A, a large scale ASIC designed by the RD53 Collaboration: two out of three front-ends (a synchronous and an asynchronous architecture); several building blocks; a (4x4) pixel region digital architecture with central local buffer storage, complying with a 3 GHz/cm2 hit rate and a 1 MHz trigger rate maintaining a very high efficiency (above 99%). The chip is 100% functional, either running in triggered or trigger-less mode. All building-blocks (DAC, ADC, Band Gap, SER, sLVS-TX/RX) and very front ends are working as expected.
Analog performance shows a remarkably low ENC of 90e-, a fast-rise time below 25ns and low-power consumption (about 4ÎŒA/pixel) in both synchronous and asynchronous front-ends; a very linear behavior of CSA and discriminator. No significant cross talk from digital electronics has been measured, achieving a low threshold of 250e-. Signal digitization is obtained with a 5b-Time over Threshold technique and is shown to be fairly linear, working well either at 80 MHz or with higher frequencies of 300 MHz obtained with a tunable local oscillator.
Irradiation results up to 600 Mrad at low temperature (-20°C) show that the chip is still fully functional and analog performance is only marginally degraded. Further irradiation will be performed up to 1 Grad either at low or room temperature, to further understand the level of radiation hardness of CHIPIX65-FE0.
We are now in the process of bump bonding CHIPIX65-FE0 to 3D and possibly planar silicon sensors during spring. Detailed results will be presented in the conference paper
First Measurements of a Prototype of a New Generation Pixel Readout ASIC in 65 nm CMOS for Extreme Rate HEP Detectors at HL-LHC
A first prototype of a readout ASIC in CMOS 65nm for a pixel detector at High Luminosity LHC is described. The pixel cell area is 50x50 um2 and the matrix consists of 64x64 pixels. The chip was designed to guarantee high efficiency at extreme data rates for very low signals and with low power consumption. Two different analogue front-end designs, one synchronous and one asynchronous, were implemented, both occupying an area of 35x35 um2. ENC value is below 100e- for an input capacitance of 50 fF and in-time threshold below 1000e-. Leakage current compensation up to 50 nA with power consumption below 5 uW. A ToT technique is used to perform charge digitization with 5-bit precision using either a 40 MHz clock or a local Fast Oscillator up to 800 MHz. Internal 10-bit DAC's are used for biasing, while monitoring is provided by a 12-bit ADC. A novel digital architecture has been developed to ensure above 99.5% hit efficiency at pixel hit rates up to 3 GHz/cm2, trigger rates up to 1 MHz and trigger latency of 12.5 us. The total power consumption per pixel is below 5uW. Analogue dead-time is below 1%. Data are sent via a serializer connected to a CMOS-to-SLVS transmitter working at 320 MHz. All IP-blocks and front-ends used are silicon-proven and tested after exposure to ionizing radiation levels of 500-800 Mrad. The chip was designed as part of the Italian INFN CHIPIX65 project and in close synergy with the international CERN RD53 and was submitted in July 2016 for production. Early test results for both front-ends regarding minimum threshold, auto-zeroing and low-noise performance are high encouraging and will be presented in this paper
An RPC-based Technical Trigger for the CMS Experiment
In the CMS experiment, sub-detectors may send special trigger signals, called "Technical Triggers", for special purposes like test and calibration. The Resistive Plate Chambers are part of the Muon Trigger System of the experiment, but might also produce a cosmic muon trigger as Technical Trigger to be used during the commissioning to the detectors, the CMS magnet Test Cosmic Challenge and the later running of CMS. The proposed implementation is based on the development of a new board, the RBC Balcony Collector (RBC); the test results on prototypes and their performance during the recent CMS Cosmic Challenge are presented
Optimization of a 65 nm CMOS imaging process for monolithic CMOS sensors for high energy physics
The long term goal of the CERN Experimental Physics Department R&D on monolithic sensors
is the development of sub-100nm CMOS sensors for high energy physics. The first technology
selected is the TPSCo 65nm CMOS imaging technology. A first submission MLR1 included
several small test chips with sensor and circuit prototypes and transistor test structures. One of
the main questions to be addressed was how to optimize the sensor in the presence of significant in-pixel circuitry. In this paper this optimization is described as well as the experimental results from the MLR1 run confirming its effectiveness. A second submission investigating wafer-scale stitching has just been completed. This work has been carried out in strong synergy with the ITS3 upgrade of the ALICE experiment
CMS analog front-end: simulations and measurements
Simulations and measurements of the Linear analogue front-end used in the RD53B-CMS (CROC) pixel chip. Lots of useful information when having to optimize Analog front-end configuration to specific pixel sensor and specific operation condition
RD53B Manual
Detalied description ifthe RD53B design applicable to both ATLAS and CMS submissions. Also GDS files of top metal of submitted chip
Characterization and verification of the Shunt-LDO regulator and its protection circuits for serial powering of the ATLAS and CMS pixel detectors
The Shunt-LDO regulator has been integrated in the ATLAS and the CMS pixel detector RD53 front-end chip to implement the serial powering scheme which both experiments have chosen as the baseline option for the HL-LHC upgrade. The performance of the integrated regulators has been characterized and specific design challenges have been identified which are related to layout parasitics and shallow trench isolation (STI) stress effects. In addition the functionality of circuits which address crucial system level aspects like the protection against overvoltage/overload has been verified
Data Transmission System For A High Energy Physics Muon
A data transmission system to be used for a muon detector in a future high energy physics experiment is described, and results are given from beam tests where prototype readout electronics from all the groups involved in the design were tested in a nearly complete chain. The arrangement was very similar to the final system to be built by 2006. Laboratory tests with high speed fibre optic links were also carried out, and preliminary results are presented here
Beam Test of the First Production Forward RPC
The production of the first set of forward Resistive Plate Chambers (RPC) for the CMS experiment at the Large Hadron Collider (LHC) has started at CERN since June 2004. The detectors are assembled with gas gaps made in Korea, mechanics made in China and are equipped with the final front-end electronics, high/low-voltage distribution and threshold control. After testing and validating one of the preseries RE1/2 chambers, it was coupled to the corresponding Cathode Strips Chamber (CSC), ME1/2 and exposed to muons at the X5A beam area at CERN. Its performance in terms of detection efficiency, noise and cluster size in this beam with 25 ns bunch structure is presented