4 research outputs found

    X chromosome inactivation : spreading of silencing

    Get PDF

    Xist and Tsix transcription dynamics is regulated by the X-to-autosome ratio and semistable transcriptional states

    Get PDF
    In female mammals, X chromosome inactivation (XCI) is a key process in the control of gene dosage compensation between Xlinked genes and autosomes. Xist and Tsix, two overlapping antisense-transcribed noncoding genes, are central elements of the X inactivation center (Xic) regulating XCI. Xist upregulation results in the coating of the entire X chromosome by Xist RNA in cis, whereas Tsix transcription acts as a negative regulator of Xist. Here, we generated Xist and Tsix reporter mouse embryonic stem (ES) cell lines to study the genetic and dynamic regulation of these genes upon differentiation. Our results revealed mutually antagonistic roles for Tsix on Xist and vice versa and indicate the presence of semistable transcriptional states of the Xic locus predicting the outcome of XCI. These transcriptional states are instructed by the X-t

    Loss of Nuclear Activity of the FBXO7 Protein in Patients with Parkinsonian-Pyramidal Syndrome (PARK15)

    Get PDF
    Mutations in the F-box only protein 7 gene (FBXO7) cause PARK15, an autosomal recessive neurodegenerative disease presenting with severe levodopa-responsive parkinsonism and pyramidal disturbances. Understanding the PARK15 pathogenesis might thus provide clues on the mechanisms of maintenance of brain dopaminergic neurons, the same which are lost in Parkinson's disease. The protein(s) encoded by FBXO7 remain very poorly characterized. Here, we show that two protein isoforms are expressed from the FBXO7 gene in normal human cells. The isoform 1 is more abundant, particularly in primary skin fibroblasts. Both isoforms are undetectable in cell lines from the PARK15 patient of an Italian family; the isoform 1 is undetectable and the isoform 2 is severely decreased in the patients from a Dutch PARK15 family. In human cell lines and mouse primary neurons, the endogenous or over-expressed, wild type FBXO7 isoform 1 displays mostly a diffuse nuclear localization. An intact N-terminus is needed for the nuclear FBXO7 localization, as N-terminal modification by PARK15-linked missense mutation, or N-terminus tag leads to cytoplasmic mislocalization. Furthermore, the N-terminus of wild type FBXO7 (but not of mutant FBXO7) is able to confer nuclear localization to profilin (a cytoplasmic protein). Our data also suggest that overexpressed mutant FBXO7 proteins (T22M, R378G and R498X) have decreased stability compared to their wild type counterpart. In human brain, FBXO7 immunoreactivity was highest in the nuclei of neurons throughout the cerebral cortex, intermediate in the globus pallidum and the substantia nigra, and lowest in the hippocampus and cerebellum. In conclusion, the common cellular abnormality found in the PARK15 patients from the Dutch and Italian families is the depletion of the FBXO7 isoform 1, which normally localizes in the cell nucleus. The activity of FBXO7 in the nucleus appears therefore crucial for the maintenance of brain neurons and the pathogenesis of PARK15

    Chromatinmediated reversible silencing of sense-antisense gene pairs in embryonic stem cells is consolidated upon differentiatio

    No full text
    Genome-wide gene expression studies have indicated that the eukaryotic genome contains many gene pairs showing overlapping sense and antisense transcription. Regulation of these coding and/or noncoding gene pairs involves intricate regulatory mechanisms. In the present study, we utilized an enhanced green fluorescent protein (EGFP)-tagged reporter plasmid cis linked to a doxycycline-inducible antisense promoter, generating antisense transcription that fully overlaps EGFP, to study the mechanism and dynamics of gene silencing after induction of noncoding antisense transcription in undifferentiated and differentiating mouse embryonic stem cells (ESCs). We found that EGFP silencing is reversible in ESCs but is locked into a stable state upon ESC differentiation. Reversible silencing in ESCs is chromatin dependent and is associated with accumulation of trimethylated lysine 36 on histone H3 (H3K36me3) at the EGFP promoter region. In differentiating ESCs, antisense transcription-induced accumulation of H3K36me3 was associated with an increase in CpG methylation at the EGFP promoter. Repression of the sense promoter was affected by small-molecule inhibitors which interfere with DNA methylation and histone demethylation pathways. Our results indicate a general mechanism for silencing of fully overlapping sense-antisense gene pairs involving antisense transcription-induced accumulation of H3K36me3 at the sense promoter, resulting in reversible silencing of the sense partner, which is stabilized during ESC differentiation by CpG methylation
    corecore