22 research outputs found

    Identification of Binding Sites of Non-I-Helix Water Molecules in Mammalian Cytochromes P450

    No full text

    CYP2D6-CYP2C9 Protein-Protein Interactions and Isoform-Selective Effects on Substrate Binding and Catalysis

    No full text
    Cytochrome P450 (P450) protein-protein interactions have been observed with various in vitro systems. It is interesting to note that these interactions seem to be isoform-dependent, with some combinations producing no effect and others producing increased or decreased catalytic activity. With some exceptions, most of the work to date has involved P450s from rabbit, rat, and other animal species, with few studies including human P450s. In the studies presented herein, the interactions of two key drug-metabolizing enzymes, CYP2C9 and CYP2D6, were analyzed in a purified, reconstituted enzyme system for changes in both substrate-binding affinity and rates of catalysis. In addition, an extensive study was conducted as to the “order of mixing” for the reconstituted enzyme system and the impact on the observations. CYP2D6 coincubation inhibited CYP2C9-mediated (S)-flurbiprofen metabolism in a protein concentration-dependent manner. Vmax values were reduced by up to 50%, but no appreciable effect on Km was observed. Spectral binding studies revealed a 20-fold increase in the KS of CYP2C9 toward (S)-flurbiprofen in the presence of CYP2D6. CYP2C9 coincubation had no effect on CYP2D6-mediated dextromethorphan O-demethylation. The order of combination of the proteins (CYP2C9, CYP2D6, and cytochrome P450 reductase) influenced the magnitude of catalysis inhibition as well as the ability of increased cytochrome P450 reductase to attenuate the change in activity. A simple model, congruent with current results and those of others, is proposed to explain oligomer formation. In summary, CYP2C9-CYP2D6 interactions can alter catalytic activity and, thus, influence in vitro-in vivo correlation predictions

    CYP2C9 protein interactions with cytochrome b5: Effects on the coupling of catalysis

    No full text
    The hemoprotein cytochrome b5 (cyt b5) has been demonstrated to affect the kinetics of drug oxidation by the microsomal cytochromes P450. However, the mechanisms through which cyt b5 exerts these effects are variable and P450 isoform-dependent. While the effects of cyt b5 on the major drug metabolizing enzymes CYP2D6, CYP2E1, and CYP3A4 are well studied, fewer studies conducted over limited ranges of cyt b5 concentrations have been performed on CYP2C9. In the present study with CYP2C9, cyt b5 exerted complex actions upon P450 oxidative reactions by affecting the rate of metabolite formation, the consumption of NADPH by cytochrome P450 reductase, and uncoupling of the reaction cycle to hydrogen peroxide and water. Cytochrome b5 devoid of the heme moiety (apo-b5) exhibited similar effects as native cyt b5. All rates were highly dependent on the cyt b5 to CYP2C9 enzyme ratio suggesting that the amount of cyt b5 present in an in vitro incubation is an important factor that can impact the reliability of extrapolating in vitro generated data to predict the in vivo condition. The major effects of cyt b5 are hypothesized to result from a cyt b5 induced conformational change in CYP2C9 that results in an increased collision frequency between the iron-oxygen species (Cpd I) and the substrate, and a decrease in the oxidase activity. Together, these findings suggest that cyt b5 can alter multiple steps in the P450 catalytic cycle via complex interactions with P450 and P450 reductase

    CYP2C9 Protein Interactions with Cytochrome b

    No full text
    corecore