41 research outputs found
Evolution equations for slowly rotating stars
We present a hyperbolic formulation of the evolution equations describing
non-radial perturbations of slowly rotating relativistic stars in the
Regge--Wheeler gauge. We demonstrate the stability preperties of the new
evolution set of equations and compute the polar w-modes for slowly rotating
stars.Comment: 27 pages, 2 figure
Nonlinear r-modes in Rapidly Rotating Relativistic Stars
The r-mode instability in rotating relativistic stars has been shown recently
to have important astrophysical implications (including the emission of
detectable gravitational radiation, the explanation of the initial spins of
young neutron stars and the spin-distribution of millisecond pulsars and the
explanation of one type of gamma-ray bursts), provided that r-modes are not
saturated at low amplitudes by nonlinear effects or by dissipative mechanisms.
Here, we present the first study of nonlinear r-modes in isentropic, rapidly
rotating relativistic stars, via 3-D general-relativistic hydrodynamical
evolutions. Our numerical simulations show that (1) on dynamical timescales,
there is no strong nonlinear coupling of r-modes to other modes at amplitudes
of order one -- unless nonlinear saturation occurs on longer timescales, the
maximum r-mode amplitude is of order unity (i.e., the velocity perturbation is
of the same order as the rotational velocity at the equator). An absolute upper
limit on the amplitude (relevant, perhaps, for the most rapidly rotating stars)
is set by causality. (2) r-modes and inertial modes in isentropic stars are
predominantly discrete modes and possible associated continuous parts were not
identified in our simulations. (3) In addition, the kinematical drift
associated with r-modes, recently found by Rezzolla, Lamb and Shapiro (2000),
appears to be present in our simulations, but an unambiguous confirmation
requires more precise initial data. We discuss the implications of our findings
for the detectability of gravitational waves from the r-mode instability.Comment: 4 pages, 4 eps figures, accepted in Physical Review Letter
Rossby-Haurwitz waves of a slowly and differentially rotating fluid shell
Recent studies have raised doubts about the occurrence of r modes in
Newtonian stars with a large degree of differential rotation. To assess the
validity of this conjecture we have solved the eigenvalue problem for
Rossby-Haurwitz waves (the analogues of r waves on a thin-shell) in the
presence of differential rotation. The results obtained indicate that the
eigenvalue problem is never singular and that, at least for the case of a
thin-shell, the analogues of r modes can be found for arbitrarily large degrees
of differential rotation. This work clarifies the puzzling results obtained in
calculations of differentially rotating axi-symmetric Newtonian stars.Comment: 8pages, 3figures. Submitted to CQ
Physical interpretation of gauge invariant perturbations of spherically symmetric space-times
By calculating the Newman-Penrose Weyl tensor components of a perturbed
spherically symmetric space-time with respect to invariantly defined classes of
null tetrads, we give a physical interpretation, in terms of gravitational
radiation, of odd parity gauge invariant metric perturbations. We point out how
these gauge invariants may be used in setting boundary and/or initial
conditions in perturbation theory.Comment: 6 pages. To appear in PR
A numerical study of the r-mode instability of rapidly rotating nascent neutron stars
The first results of numerical analysis of classical r-modes of {\it rapidly}
rotating compressible stellar models are reported. The full set of linear
perturbation equations of rotating stars in Newtonian gravity are numerically
solved without the slow rotation approximation. A critical curve of
gravitational wave emission induced instability which restricts the rotational
frequencies of hot young neutron stars is obtained. Taking the standard cooling
mechanisms of neutron stars into account, we also show the `evolutionary
curves' along which neutron stars are supposed to evolve as cooling and
spinning-down proceed. Rotational frequencies of stars suffering
from this instability decrease to around 100Hz when the standard cooling
mechanism of neutron stars is employed. This result confirms the results of
other authors who adopted the slow rotation approximation.Comment: 4 pages, 2 figures; MNRAS,316,L1(2000
Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars
We develop the formalism required to study the nonlinear interaction of modes
in rotating Newtonian stars in the weakly nonlinear regime. The formalism
simplifies and extends previous treatments. At linear order, we elucidate and
extend slightly a formalism due to Schutz, show how to decompose a general
motion of a rotating star into a sum over modes, and obtain uncoupled equations
of motion for the mode amplitudes under the influence of an external force.
Nonlinear effects are added perturbatively via three-mode couplings. We
describe a new, efficient way to compute the coupling coefficients, to zeroth
order in the stellar rotation rate, using spin-weighted spherical harmonics.
We apply this formalism to derive some properties of the coupling
coefficients relevant to the nonlinear interactions of unstable r-modes in
neutron stars, postponing numerical integrations of the coupled equations of
motion to a later paper. From an astrophysical viewpoint, the most interesting
result of this paper is that many couplings of r-modes to other rotational
modes (modes with zero frequencies in the non-rotating limit) are small: either
they vanish altogether because of various selection rules, or they vanish to
lowest order in the angular velocity. In zero-buoyancy stars, the coupling of
three r-modes is forbidden entirely and the coupling of two r-modes to one
hybrid rotational mode vanishes to zeroth order in rotation frequency. In
incompressible stars, the coupling of any three rotational modes vanishes to
zeroth order in rotation frequency.Comment: 62 pages, no figures. Corrected error in computation of coupling
coefficients, added new selection rule and an appendix on energy and angular
momentum of mode
R-mode oscillations of rapidly rotating Newtonian stars - A new numerical scheme and its application to the spin evolution of neutron stars
We have developed a new numerical scheme to solve r-mode oscillations of {\it
rapidly rotating polytropic stars} in Newtonian gravity. In this scheme, Euler
perturbations of the density, three components of the velocity are treated as
four unknown quantities together with the oscillation frequency. For the basic
equations of oscillations, the compatibility equations are used instead of the
linearized equations of motion.
By using this scheme, we have solved the classical r-mode oscillations of
rotational equilibrium sequences of polytropes with the polytropic indices and 1.5 for and 4 modes. Here is the rank of the
spherical harmonics . These results have been applied to investigate
evolution of uniformly rotating hot young neutron stars by considering the
effect of gravitational radiation and viscosity. We have found that the maximum
angular velocities of neutron stars are around 10-20% of the Keplerian angular
velocity irrespective of the softness of matter. This confirms the results
obtained from the analysis of r-modes with the slow rotation approximation
employed by many authors.Comment: LaTeX 12 pages with 19 figures, to be published in PR
Gravitational waves from single neutron stars: an advanced detector era survey
With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important
physical mechanisms that could lead to emission of potentially detectable
gravitational radiation from isolated and accreting neutron stars. In
particular we discuss the gravitational wave-driven instability and
asteroseismology formalism of the f- and r-modes, the different ways that a
neutron star could form and sustain a non-axisymmetric quadrupolar "mountain"
deformation, the excitation of oscillations during magnetar flares and the
possible gravitational wave signature of pulsar glitches. We focus on progress
made in the recent years in each topic, make a fresh assessment of the
gravitational wave detectability of each mechanism and, finally, highlight key
problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and
Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor
corrections to match published versio
Peripheral Blood Signatures of Lead Exposure
BACKGROUND: Current evidence indicates that even low-level lead (Pb) exposure can have detrimental effects, especially in children. We tested the hypothesis that Pb exposure alters gene expression patterns in peripheral blood cells and that these changes reflect dose-specific alterations in the activity of particular pathways. METHODOLOGY/PRINCIPAL FINDING: Using Affymetrix Mouse Genome 430 2.0 arrays, we examined gene expression changes in the peripheral blood of female Balb/c mice following exposure to per os lead acetate trihydrate or plain drinking water for two weeks and after a two-week recovery period. Data sets were RMA-normalized and dose-specific signatures were generated using established methods of supervised classification and binary regression. Pathway activity was analyzed using the ScoreSignatures module from GenePattern. CONCLUSIONS/SIGNIFICANCE: The low-level Pb signature was 93% sensitive and 100% specific in classifying samples a leave-one-out crossvalidation. The high-level Pb signature demonstrated 100% sensitivity and specificity in the leave-one-out crossvalidation. These two signatures exhibited dose-specificity in their ability to predict Pb exposure and had little overlap in terms of constituent genes. The signatures also seemed to reflect current levels of Pb exposure rather than past exposure. Finally, the two doses showed differential activation of cellular pathways. Low-level Pb exposure increased activity of the interferon-gamma pathway, whereas high-level Pb exposure increased activity of the E2F1 pathway