5 research outputs found

    Primary and secondary cases in Escherichia coli O157 outbreaks: a statistical analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Within outbreaks of <it>Escherichia coli </it>O157 (<it>E. coli </it>O157), at least 10–15% of cases are thought to have been acquired by secondary transmission. However, there has been little systematic quantification or characterisation of secondary outbreak cases worldwide. The aim of this study was to characterise secondary outbreak cases, estimate the overall proportion of outbreak cases that were the result of secondary transmission and to analyse the relationships between primary and secondary outbreak cases by mode of transmission, country and median age.</p> <p>Methods</p> <p>Published data was obtained from 90 confirmed <it>Escherichia coli </it>O157 outbreaks in Great Britain, Ireland, Scandinavia, Canada, the United States and Japan, and the outbreaks were described in terms of modes of primary and secondary transmission, country, case numbers and median case age. Outbreaks were tested for statistically significant differences in the number of ill, confirmed, primary and secondary cases (analysis of variance and Kruskal-Wallis) and in the rate of secondary cases between these variables (Generalised Linear Models).</p> <p>Results</p> <p>The outbreaks had a median of 13.5 confirmed cases, and mean proportion of 0.195 secondary cases. There were statistically significant differences in the numbers of ill, confirmed, primary and secondary cases between modes of primary transmission (p < 0.021), and in primary and secondary cases between median age categories (p < 0.039) and modes of secondary transmission (p < 0.001).</p> <p>Secondary case rates differed statistically significantly between modes of secondary and primary transmission and median age categories (all p < 0.001), but not between countries (p = 0.23). Statistically significantly higher rates of secondary transmission were found in outbreaks with a median age <6 years and those with secondary transmission via person to person spread in nurseries. No statistically significant interactions were found between country, mode of transmission and age category.</p> <p>Conclusion</p> <p>Our analyses indicated that ~20% of <it>E. coli </it>O157 outbreak cases were the result of secondary spread, and that this spread is significantly influenced by age and modes of primary and secondary transmission, but not country. In particular, the results provide further data emphasising the importance of simple but effective preventive strategies, such as handwashing, that can reduce the risk of secondary spread, particularly amongst young children in nurseries.</p

    Pathogenic Potential to Humans of Bovine Escherichia coli O26, Scotland

    Get PDF
    Escherichia coli O26 and O157 have similar overall prevalences in cattle in Scotland, but in humans, Shiga toxin–producing E. coli O26 infections are fewer and clinically less severe than E. coli O157 infections. To investigate this discrepancy, we genotyped E. coli O26 isolates from cattle and humans in Scotland and continental Europe. The genetic background of some strains from Scotland was closely related to that of strains causing severe infections in Europe. Nonmetric multidimensional scaling found an association between hemolytic uremic syndrome (HUS) and multilocus sequence type 21 strains and confirmed the role of stx&lt;sub&gt;2&lt;/sub&gt; in severe human disease. Although the prevalences of E. coli O26 and O157 on cattle farms in Scotland are equivalent, prevalence of more virulent strains is low, reducing human infection risk. However, new data on E. coli O26–associated HUS in humans highlight the need for surveillance of non-O157 enterohemorrhagic E. coli and for understanding stx&lt;sub&gt;2&lt;/sub&gt; phage acquisition
    corecore