108 research outputs found

    Maternity Waiting Homes as an Intervention to Increase Facility Delivery in Rural Zambia

    Full text link
    Graduate or above research in rural Zambiahttps://deepblue.lib.umich.edu/bitstream/2027.42/148301/1/BeckPeroskyMunroKramerLockhartMusondaNaggayiLori.pd

    Penalized regression, mixed effects models and appropriate modelling

    Get PDF
    Linear mixed effects methods for the analysis of longitudinal data provide a convenient framework for modelling within-individual correlation across time. Using spline functions allows for flexible modelling of the response as a smooth function of time. A computational connection between linear mixed effects modelling and spline smoothing has resulted in a cross-fertilization of these two fields. The connection has popularized the use of spline functions in longitudinal data analysis and the use of mixed effects software in smoothing analyses. However, care must be taken in exploiting this connection, as resulting estimates of the underlying population mean might not track the data well and associated standard errors might not reflect the true variability in the data. We discuss these shortcomings and suggest some easy-to-compute methods to eliminate them

    Maternity waiting homes as an intervention to increase facility delivery in rural Zambia

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150534/1/ijgo12864_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150534/2/ijgo12864.pd

    Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers

    Full text link
    Preclinical investigations have established that methamphetamine (MA) produces long-term changes in dopamine (DA) neurons in the striatum. Human studies have suggested similar effects and correlated motor and cognitive deficits. The present study was designed to further our understanding of changes in brain function in humans that might result from chronic high dose use of MA after at least 3 months of abstinence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46373/1/213_2006_Article_330.pd

    combined pik3ca and fgfr inhibition with alpelisib and infigratinib in patients with pik3ca mutant solid tumors with or without fgfr alterations

    Get PDF
    PURPOSE Concurrent PIK3CA mutations and fibroblast growth factor receptor (FGFR) alterations occur in multiple cancer types, including estrogen receptor–positive breast cancer, bladder cancer, and endometrial cancer. In this first-in-human combination trial, we explored safety and preliminary efficacy of combining the PI3Kα selective inhibitor alpelisib with the FGFR1-4 selective inhibitor infigratinib. PATIENTS AND METHODS Patients with PIK3CA-mutant advanced solid tumors, with or without FGFR1-3 alterations, were enrolled in the dose escalation or one of three molecular-defined dose-expansion cohorts. The primary end point was the maximum tolerated dose. Secondary end points included safety, pharmacokinetics, and response. Archival tumor samples were sequenced to explore genomic correlates of response. RESULTS In combination, both agents were escalated to full, single-agent recommended doses (alpelisib, 300 mg per day continuously; infigratinib, 125 mg per day 3 weeks on followed by 1 week off). The toxicity profile of the combination was consistent with the established safety profile of each agent, although 71% of all patients required at least one treatment interruption or dose reduction. Molecularly selected dose expansions in breast cancer and other solid tumors harboring PIK3CA mutations, alone or in combination with FGFR alterations, identified sporadic responses, predominately in tumor types and genotypes previously defined to have sensitivity to these agents. CONCLUSION The combination of alpelisib and infigratinib can be administered at full single-agent doses, although the high rate of dose interruption or reduction suggests long-term tolerability may be challenging. In exploratory signal-seeking cohorts of patients harboring dual PIK3CA and FGFR1-3 alterations, no clear evidence of synergistic activity was observed

    Prevalence and Evolution of Core Photosystem II Genes in Marine Cyanobacterial Viruses and Their Hosts

    Get PDF
    Cyanophages (cyanobacterial viruses) are important agents of horizontal gene transfer among marine cyanobacteria, the numerically dominant photosynthetic organisms in the oceans. Some cyanophage genomes carry and express host-like photosynthesis genes, presumably to augment the host photosynthetic machinery during infection. To study the prevalence and evolutionary dynamics of this phenomenon, 33 cultured cyanophages of known family and host range and viral DNA from field samples were screened for the presence of two core photosystem reaction center genes, psbA and psbD. Combining this expanded dataset with published data for nine other cyanophages, we found that 88% of the phage genomes contain psbA, and 50% contain both psbA and psbD. The psbA gene was found in all myoviruses and Prochlorococcus podoviruses, but could not be amplified from Prochlorococcus siphoviruses or Synechococcus podoviruses. Nearly all of the phages that encoded both psbA and psbD had broad host ranges. We speculate that the presence or absence of psbA in a phage genome may be determined by the length of the latent period of infection. Whether it also carries psbD may reflect constraints on coupling of viral- and host-encoded PsbA–PsbD in the photosynthetic reaction center across divergent hosts. Phylogenetic clustering patterns of these genes from cultured phages suggest that whole genes have been transferred from host to phage in a discrete number of events over the course of evolution (four for psbA, and two for psbD), followed by horizontal and vertical transfer between cyanophages. Clustering patterns of psbA and psbD from Synechococcus cells were inconsistent with other molecular phylogenetic markers, suggesting genetic exchanges involving Synechococcus lineages. Signatures of intragenic recombination, detected within the cyanophage gene pool as well as between hosts and phages in both directions, support this hypothesis. The analysis of cyanophage psbA and psbD genes from field populations revealed significant sequence diversity, much of which is represented in our cultured isolates. Collectively, these findings show that photosynthesis genes are common in cyanophages and that significant genetic exchanges occur from host to phage, phage to host, and within the phage gene pool. This generates genetic diversity among the phage, which serves as a reservoir for their hosts, and in turn influences photosystem evolution

    Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements

    Get PDF
    The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the α-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel–D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections

    A conceptual framework for nomenclatural stability and validity of medically important fungi: a proposed global consensus guideline for fungal name changes supported by ABP, ASM, CLSI, ECMM, ESCMID-EFISG, EUCAST-AFST, FDLC, IDSA, ISHAM, MMSA, and MSGERC

    Get PDF
    The rapid pace of name changes of medically important fungi is creating challenges for clinical laboratories and clinicians involved in patient care. We describe two sources of name change which have different drivers, at the species versus the genus level. Some suggestions are made here to reduce the number of name changes. We urge taxonomists to provide diagnostic markers of taxonomic novelties. Given the instability of phylogenetic trees due to variable taxon sampling, we advocate to maintain genera at the largest possible size. Reporting of identified species in complexes or series should where possible comprise both the name of the overarching species and that of the molecular sibling, often cryptic species. Because the use of different names for the same species will be unavoidable for many years to come, an open access online database of the names of all medically important fungi, with proper nomenclatural designation and synonymy, is essential. We further recommend that while taxonomic discovery continues, the adaptation of new name changes by clinical laboratories and clinicians be reviewed routinely by a standing committee for validation and stability over time, with reference to an open access database, wherein reasons for changes are listed in a transparent way
    corecore