22 research outputs found
The PPARGC1A Gly482Ser polymorphism is associated with elite long-distance running performance
Success in long-distance running relies on multiple factors including oxygen utilisation and lactate metabolism, and genetic associations with athlete status suggest elite competitors are heritably predisposed to superior performance. The Gly allele of the PPARGC1A Gly482Ser rs8192678 polymorphism has been associated with endurance athlete status and favourable aerobic training adaptations. However, the association of this polymorphism with performance amongst long-distance runners remains unclear. Accordingly, this study investigated whether rs8192678 was associated with elite status and competitive performance of long-distance runners. Genomic DNA from 656 Caucasian participants including 288 long-distance runners (201 men, 87 women) and 368 non-athletes (285 men, 83 women) was analysed. Medians of the 10 best UK times (Top10) for 10 km, half-marathon and marathon races were calculated, with all included athletes having personal best (PB) performances within 20% of Top10 (this study's definition of "elite"). Genotype and allele frequencies were compared between athletes and non-athletes, and athlete PB compared between genotypes. There were no differences in genotype frequency between athletes and non-athletes, but athlete Ser allele carriers were 2.5% faster than Gly/Gly homozygotes (p = 0.030). This study demonstrates that performance differences between elite long-distance runners are associated with rs8192678 genotype, with the Ser allele appearing to enhance performance
Co-evolution of genomes and plasmids within Chlamydia trachomatis and the emergence in Sweden of a new variant strain.
BACKGROUND: Chlamydia trachomatis is the most common cause of sexually transmitted infections globally and the leading cause of preventable blindness in the developing world. There are two biovariants of C. trachomatis: 'trachoma', causing ocular and genital tract infections, and the invasive 'lymphogranuloma venereum' strains. Recently, a new variant of the genital tract C. trachomatis emerged in Sweden. This variant escaped routine diagnostic tests because it carries a plasmid with a deletion. Failure to detect this strain has meant it has spread rapidly across the country provoking a worldwide alert. In addition to being a key diagnostic target, the plasmid has been linked to chlamydial virulence. Analysis of chlamydial plasmids and their cognate chromosomes was undertaken to provide insights into the evolutionary relationship between chromosome and plasmid. This is essential knowledge if the plasmid is to be continued to be relied on as a key diagnostic marker, and for an understanding of the evolution of Chlamydia trachomatis. RESULTS: The genomes of two new C. trachomatis strains were sequenced, together with plasmids from six C. trachomatis isolates, including the new variant strain from Sweden. The plasmid from the new Swedish variant has a 377 bp deletion in the first predicted coding sequence, abolishing the site used for PCR detection, resulting in negative diagnosis. In addition, the variant plasmid has a 44 bp duplication downstream of the deletion. The region containing the second predicted coding sequence is the most highly conserved region of the plasmids investigated. Phylogenetic analysis of the plasmids and chromosomes are fully congruent. Moreover this analysis also shows that ocular and genital strains diverged from a common C. trachomatis progenitor. CONCLUSION: The evolutionary pathways of the chlamydial genome and plasmid imply that inheritance of the plasmid is tightly linked with its cognate chromosome. These data suggest that the plasmid is not a highly mobile genetic element and does not transfer readily between isolates. Comparative analysis of the plasmid sequences has revealed the most conserved regions that should be used to design future plasmid based nucleic acid amplification tests, to avoid diagnostic failures
Association of ACTN3 R577X but not ACE I/D gene variants with elite rugby union player status and playing position
We aimed to quantify the ACE I/D and ACTN3 R577X (rs1815739) genetic variants in elite rugby athletes (rugby union and league), compare genotype frequencies to controls and between playing positions. The rugby athlete cohort consisted of 507 Caucasian men, including 431 rugby union athletes that for some analyses were divided into backs and forwards and into specific positional groups: front five, back row, half backs, centers and back three. Controls were 710 Caucasian men and women. Real-time PCR of genomic DNA was used to determine genotypes using TaqMan probes and groups were compared using Chi-square and odds ratio (OR) statistics. Correction of p-values for multiple comparisons was according to Benjamini-Hochberg. There was no difference in ACE I/D genotype between groups. ACTN3 XX genotype tended to be underrepresented in rugby union backs (15.7%) compared to forwards (24.8%; P=0.06). Interestingly, the 69 back three players (wings and full backs) in rugby union included only six XX genotype individuals (8.7%), with the R allele more common in the back three (68.8%) than controls (58.0%; χ2=6.672, P=0.04; OR=1.60) and forwards (47.5%; χ2=11.768, P=0.01; OR=2.00). Association of ACTN3 R577X with playing position in elite rugby union athletes suggests inherited fatigue resistance is more prevalent in forwards while inherited sprint ability is more prevalent in backs, especially wings and full backs. These results also demonstrate the advantage of focusing genetic studies on a large cohort within a single sport, especially when intra-sport positional differences exist, instead of combining several sports with varied demands and athlete characteristics
Collagen Gene Polymorphisms Previously Associated with Resistance to Soft-Tissue Injury Are More Common in Competitive Runners Than Nonathletes
Dines, HR, Nixon, J, Lockey, SJ, Herbert, AJ, Kipps, C, Pedlar, CR, Day, SH, Heffernan, SM, Antrobus, MR, Brazier, J, Erskine, RM, Stebbings, GK, Hall, ECR, and Williams, AG. Collagen gene polymorphisms previously associated with resistance to soft-tissue injury are more common in competitive runners than nonathletes. J Strength Cond Res XX(X): 000-000, 2022-Single-nucleotide polymorphisms (SNPs) of collagen genes have been associated with soft-tissue injury and running performance. However, their combined contribution to running performance is unknown. We investigated the association of 2 collagen gene SNPs with athlete status and performance in 1,429 Caucasian subjects, including 597 competitive runners (354 men and 243 women) and 832 nonathletes (490 men and 342 women). Genotyping for COL1A1 rs1800012 (C > A) and COL5A1 rs12722 (C > T) SNPs was performed by a real-time polymerase chain reaction. The numbers of "injury-resistant" alleles from each SNP, based on previous literature (rs1800012 A allele and rs12722 C allele), were combined as an injury-resistance score (RScore, 0-4; higher scores indicate injury resistance). Genotype frequencies, individually and combined as an RScore, were compared between cohorts and investigated for associations with performance using official race times. Runners had 1.34 times greater odds of being rs12722 CC homozygotes than nonathletes (19.7% vs. 15.5%, p = 0.020) with no difference in the rs1800012 genotype distribution (p = 0.659). Fewer runners had an RScore 0 of (18.5% vs. 24.7%) and more had an RScore of 4 (0.6% vs. 0.3%) than nonathletes (p < 0.001). Competitive performance was not associated with the COL1A1 genotype (p = 0.933), COL5A1 genotype (p = 0.613), or RScore (p = 0.477). Although not associated directly with running performance among competitive runners, a higher combined frequency of injury-resistant COL1A1 rs1800012 A and COL5A1 rs12722 C alleles in competitive runners than nonathletes suggests these SNPs may be advantageous through a mechanism that supports, but does not directly enhance, running performance
Collagen Gene Polymorphisms Previously Associated with Resistance to Soft-Tissue Injury Are More Common in Competitive Runners Than Nonathletes
Single-nucleotide polymorphisms (SNPs) of collagen genes have been associated with soft-tissue injury and running performance. However, their combined contribution to running performance is unknown. We investigated the association of 2 collagen gene SNPs with athlete status and performance in 1,429 Caucasian subjects, including 597 competitive runners (354 men and 243 women) and 832 nonathletes (490 men and 342 women). Genotyping for COL1A1 rs1800012 (C > A) and COL5A1 rs12722 (C > T) SNPs was performed by a real-time polymerase chain reaction. The numbers of “injury-resistant” alleles from each SNP, based on previous literature (rs1800012 A allele and rs12722 C allele), were combined as an injury-resistance score (RScore, 0–4; higher scores indicate injury resistance). Genotype frequencies, individually and combined as an RScore, were compared between cohorts and investigated for associations with performance using official race times. Runners had 1.34 times greater odds of being rs12722 CC homozygotes than nonathletes (19.7% vs. 15.5%, p = 0.020) with no difference in the rs1800012 genotype distribution (p = 0.659). Fewer runners had an RScore 0 of (18.5% vs. 24.7%) and more had an RScore of 4 (0.6% vs. 0.3%) than nonathletes (p < 0.001). Competitive performance was not associated with the COL1A1 genotype (p = 0.933), COL5A1 genotype (p = 0.613), or RScore (p = 0.477). Although not associated directly with running performance among competitive runners, a higher combined frequency of injury-resistant COL1A1 rs1800012 A and COL5A1 rs12722 C alleles in competitive runners than nonathletes suggests these SNPs may be advantageous through a mechanism that supports, but does not directly enhance, running performance
An Orally Bioavailable, Indole-3-glyoxylamide Based Series of Tubulin Polymerization Inhibitors Showing Tumor Growth Inhibition in a Mouse Xenograft Model of Head and Neck Cancer.
A number of indole-3-glyoxylamides have previously been reported as tubulin polymerization inhibitors, although none has yet been successfully developed clinically. We report here a new series of related compounds, modified according to a strategy of reducing aromatic ring count and introducing a greater degree of saturation, which retain potent tubulin polymerization activity but with a distinct SAR from previously documented libraries. A subset of active compounds from the reported series is shown to interact with tubulin at the colchicine binding site, disrupt the cellular microtubule network, and exert a cytotoxic effect against multiple cancer cell lines. Two compounds demonstrated significant tumor growth inhibition in a mouse xenograft model of head and neck cancer, a type of the disease which often proves resistant to chemotherapy, supporting further development of the current series as potential new therapeutics
SARS-CoV-2-specific immune responses and clinical outcomes after COVID-19 vaccination in patients with immune-suppressive disease
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (<380 AU ml−1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies
The PPARGC1A Gly482Ser polymorphism is associated with elite long-distance running performance
Success in long-distance running relies on multiple factors including oxygen utilisation and lactate metabolism, and genetic associations with athlete status suggest elite competitors are heritably predisposed to superior performance. The Gly allele of the PPARGC1A Gly482Ser rs8192678 polymorphism has been associated with endurance athlete status and favourable aerobic training adaptations. However, the association of this polymorphism with performance amongst long-distance runners remains unclear. Accordingly, this study investigated whether rs8192678 was associated with elite status and competitive performance of long-distance runners. Genomic DNA from 656 Caucasian participants including 288 long-distance runners (201 men, 87 women) and 368 non-athletes (285 men, 83 women) was analysed. Medians of the 10 best UK times (Top10) for 10 km, half-marathon and marathon races were calculated, with all included athletes having personal best (PB) performances within 20% of Top10 (this study’s definition of “elite”). Genotype and allele frequencies were compared between athletes and non-athletes, and athlete PB compared between genotypes. There were no differences in genotype frequency between athletes and non-athletes, but athlete Ser allele carriers were 2.5% faster than Gly/Gly homozygotes (p = 0.030). This study demonstrates that performance differences between elite long-distance runners are associated with rs8192678 genotype, with the Ser allele appearing to enhance performance.</p