10 research outputs found
Fine Root Productivity and Dynamics on a Forested Floodplain in South Carolina
The highly dynamic, fine-root component of forested wetland ecosystems has received inadequate attention in the literature. Characterizing fine root dynamics is a challenging endeavor in any system, but the difficulties are particularly evident in forested floodplains where frequent hydrologic fluctuations directly influence fine root dynamics. Fine root (\u3c 3mm) biomass, production, and turnover were estimated for three soils exhibiting different drainage patterns within a mixed-oak community on the Coosawhatchie River floodplain, Jasper County, SC. Within a 45-cm deep vertical profile, 74% of total fine root biomass was restricted to the upper 15 cm of the soil surface. Fine root biomass decreased as the soil became less well-drained (e.g., fine root biomass in well-drained soil \u3e intermediately drained soil \u3e poorly drained soil). Fine root productivity was measured for one year using minirhizotrons and in-situ screens. Both methods suggested higher fine root production in better drained soils but showed frequent fluctuations in fine root growth and mortality, suggesting the need for frequent sampling at short intervals (e.g., monthly) to accurately assess fine root growth and turnover. Fine root production, estimated with in-situ screens, was 1.5, 1.8, and 0.9 Mg ha-1 yr-1 in the well-drained, intermediately drained, and poorly drained soils, respectively. Results from minirhizotrons indicated that fine roots in well-drained soils grew to greater depths while fine roots in poorly drained soils were restricted to surface soils. Minirhizotrons also revealed that the distribution of fine roots among morphological classes changed between well-drained and poorly drained soils
Above- and below-ground biomass accumulation, production, and distribution of sweetgum and loblolly pine grown with irrigation and fertilization.
Abstract: Increased forest productivity has been obtained by improving resource availability through water and nutrient amendments. However, more stress-tolerant species that have robust site requirements do not respond consistently to irrigation. An important factor contributing to robust site requirements may be the distribution of biomass belowground, yet available information is limited. We examined the accumulation and distribution of above- and below-ground biomass in sweetgum (Liqrridambar sfyrac$lua L.) and loblolly pine (Pinus taeda L.) stands receiving irrigation and fertilization. Mean annual aboveground production after 4 years ranged from 2.4 to 5.1 ~g.ha-'.year' for sweetgum and from 5.0 to 6.9 ~g.ha-l.year-l for pine. Sweetgum responded positively to irrigation and fertilization with an additive response to irrigation + fertilization. Pine only responded to fertilization. Sweetgum root mass fraction (RME)in creased with fertilization at 2 years and decreased with fertilization at 4 years. There were no detectable treatment differences in loblolly pine RMF. Development explained from 67% to 98% of variation in shoot versus root allometry for ephemeral and perennial tissues, fertilization explained no more than 5% of the variation in for either species, and irrigation did not explain any. We conclude that shifts in allocation from roots to shoots do not explain nutrient-induced growth stimulations