234 research outputs found

    Impact of Marine Locomotion Constraints on a Bio-inspired Aerial-Aquatic Wing:Experimental Performance Verification

    Get PDF
    This paper describes the design, fabrication, experimental testing and performance optimization of the morphology of a flapping wing for use on a robot capable of aerial and aquatic modes of locomotion. The focus of the optimization studies is that of wing design for aquatic propulsion. Inspiration for the research stems from numerous avian species which use a flapping wing for the dual purpose of locomotion (propulsion) in both air and water. The main aim of this research is to determine optimal kinematic parameters for marine locomotion that maximize nondimensionalized performance measures (e.g., propulsive efficiency), derived from analysis of avian wing morphing mechanisms that balance competing demands of both aerial and aquatic movement. Optimization of the kinematic parameters enables the direct comparison between outstretched (aerial) and retracted (aquatic) wing morphologies and permits trade-off studies in the design space for future robotic vehicles. Static foils representing the wing in both an extended and retracted orientation have been manufactured and subsequently subjected to testing over a range of kinematics. Details of the purpose built 2 degree-of-freedom (dof) flapping mechanism are presented. The gathered results enable validation of previously developed numerical models as well as quantifying achievable performance measures. This research focuses on the mechanical propulsive efficiencies and thrust coefficients as key performance measures whilst simultaneously considering the required mechanical input torques and the associated thrust produced.</jats:p

    The energy benefits of the pantograph wing mechanism in flapping flight:Case study of a gull

    Get PDF
    Bird wings generally contain a 4-bar pantograph mechanism in the forearm that enables the wrist joint to be actuated from the elbow joint thus reducing the number of wing muscles and hence reducing the wing inertia and inertial drag. In this paper we develop a theoretical model of inertial power for flapping flight to estimate the advantage of the 4-bar pantograph mechanism by comparing the inertial power required for the case where wrist muscles are present in the forearm with the case where wrist muscles are not present in the forearm. It is difficult to predict how wrist muscles would look when there is no pantograph mechanism. Therefore a lower bound and upper bound case are defined. The lower bound case involves redistributing the elbow muscles with no increase in wing mass. The upper bound case involves replicating the biceps-triceps muscles near the wrist joint. At minimum power speed the model estimates that the 4-bar pantograph mechanism reduces the inertial power for the gull from between 6.1%–12.3% and reduces the overall power by 0.6%–1.2%. When account is taken of the tight margins involved in the design of a flying vehicle, the energy savings produced by the pantograph mechanism are significant. A ring-billed gull was chosen for the case study and an adult specimen was obtained to gather morphometric data. Lessons for the design of flapping micro air vehicles are discussed. </jats:p

    Windage Torque Reduction in Low-Pressure Turbine Cavities Part 2:Experimental and Numerical Results

    Get PDF
    Minimizing the losses within a low-pressure turbine (LPT) system is critical for the design of next-generation ultra-high bypass ratio aero-engines. The stator-well cavity windage torque can be a significant source of loss within the system, influenced by the ingestion of mainstream annulus air with a tangential velocity opposite to that of the rotor. This paper presents experimental and numerical results of three carefully designed Flow Control Concepts (FCCs) – additional geometric features on the stator surfaces, which were optimized to minimize the windage torque within a scaled, engine-representative stator-well cavity. FCC1 and FCC2 featured rows of guide vanes at the inlet to the downstream and upstream wheel-spaces, respectively. FCC3 combined FCC1 and FCC2. Superposed flows were introduced to the upstream section of the cavity, which modelled the low radius coolant and higher radius leakage between the rotor blades. In addition to torque measurements, total and static pressures were collected, from which the cavity swirl ratio was derived. Additional swirl measurements were collected using a five-hole aerodynamic probe, which traversed radially at the entrance and exit of the cavity. A cavity windage torque reduction of 55% on the baseline (which has no flow control) was measured for FCC3, at the design condition with superposed flow. For this concept, an increase in the cavity swirl in both the upstream and downstream wheel-spaces was demonstrated experimentally and numerically. With increasing superposed flow, the contribution of FCC1 surpassed FCC2, due to more mass flow enterin

    Windage Torque Reduction in Low-Pressure Turbine Cavities Part 1:Concept Design and Numerical Investigations

    Get PDF
    The windage torque on rotational walls has negative effect on the performance of the low pressure turbine. In this paper, three novel flow control concepts (FCCs) were proposed to reduce the windage torque within a turbine stator well, with upstream and downstream cavities connected by an interstage labyrinth seal. The swirl and flow pattern inside a reference turbine cavity was first investigated and the potential locations for the FCCs were identified using numerical simulations. FCC1 was a circumferential row of leaned deflectors downstream of the labyrinth seal. FCC2 was a set of deflector vanes and platform to optimize the ingress swirl at high radius in the upstream cavity. FCC3 combined the two flow concepts and the superposition resulted in a stator well windage torque reduction of 70% when compared to the baseline design. The FCCs also showed performance benefits at off-design conditions and over a range of secondary flow rates to the cavity. In Part 2 [1], the numerical analysis and performance of the FCCs are validated in an experimental rig, using additively-manufactured components

    Stratified and Buoyancy-Induced Flow in Closed Compressor Rotors

    Get PDF
    The radial growth of compressor discs is strongly influenced by conjugate heat transfer between conduction in the co-rotating discs and buoyancy-driven convection in the rotating fluid core between the discs. An accurate prediction of metal temperatures of these discs is an important issue in thermo-mechanical design, where blade-tip clearances must be controlled carefully to ensure safety and efficiency under all operating conditions. This paper presents an experimental study of the fluid dynamics and heat transfer in a closed rotating cavity, comparing results with theoretical models and introducing a new compressibility parameter X. At large values of X, where compressibility effects are significant, the air temperature approaches that of the shroud; such conditions suppress buoyancy effects and the flow in the rotating cavity becomes stratified, with convection replaced by conduction inside the fluid core. There are important practical consequences of stratification with significant differences in temperature distributions and stresses inside compressor discs. The influence of X is also shown on the radial temperature distributions for the discs and on the shroud heat transfer correlations, which are compared qualitatively with previously published data collected where the effects of compressibility are relatively small. The experiments reveal that there is a critical value of X where the convective heat flux to the shroud is zero. The radial distribution of disc temperature was that expected from pure conduction in a cylinder. A new heat transfer correlation based on measured shroud heat flux and the theoretical core temperature is presented. The unsteady flow characteristics in the cavity were also investigated, identifying coherent rotating structures across a range of experimental conditions. These cyclonic/anticyclonic vortex pairs generate the nondimensional circumferential pressure difference necessary for the radial outflow (of cold fluid) and inflow (of hot fluid) through the rotating core. The experiments show that the magnitude of these pressure variations can be correlated against Grashof number and at high values of X the structures do not exist. The combined experimental and theoretical results will be of practical interest to engine designers and for the validation of computational models.</p

    Optimising measurement of health-related characteristics of the built environment: Comparing data collected by foot-based street audits, virtual street audits and routine secondary data sources.

    Get PDF
    The role of the neighbourhood environment in influencing health behaviours continues to be an important topic in public health research and policy. Foot-based street audits, virtual street audits and secondary data sources are widespread data collection methods used to objectively measure the built environment in environment-health association studies. We compared these three methods using data collected in a nationally representative epidemiological study in 17 British towns to inform future development of research tools. There was good agreement between foot-based and virtual audit tools. Foot based audits were superior for fine detail features. Secondary data sources measured very different aspects of the local environment that could be used to derive a range of environmental measures if validated properly. Future built environment research should design studies a priori using multiple approaches and varied data sources in order to best capture features that operate on different health behaviours at varying spatial scales

    Validation of a mouse xenograft model system for gene expression analysis of human acute lymphoblastic leukaemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms. For haematological malignancies, the non-obese diabetic/severe combined immunodeficient (NOD/SCID) mouse is one of the most successful models to study paediatric acute lymphoblastic leukaemia (ALL). However, for this model to be effective for studying engraftment and therapy responses at the whole genome level, careful molecular characterisation is essential.</p> <p>Results</p> <p>Here, we sought to validate species-specific gene expression profiling in the high engraftment continuous ALL NOD/SCID xenograft. Using the human Affymetrix whole transcript platform we analysed transcriptional profiles from engrafted tissues without prior cell separation of mouse cells and found it to return highly reproducible profiles in xenografts from individual mice. The model was further tested with experimental mixtures of human and mouse cells, demonstrating that the presence of mouse cells does not significantly skew expression profiles when xenografts contain 90% or more human cells. In addition, we present a novel <it>in silico </it>and experimental masking approach to identify probes and transcript clusters susceptible to cross-species hybridisation.</p> <p>Conclusions</p> <p>We demonstrate species-specific transcriptional profiles can be obtained from xenografts when high levels of engraftment are achieved or with the application of transcript cluster masks. Importantly, this masking approach can be applied and adapted to other xenograft models where human tissue infiltration is lower. This model provides a powerful platform for identifying genes and pathways associated with ALL disease progression and response to therapy <it>in vivo</it>.</p

    Effective practices for the concept design of electromechanical systems

    Get PDF
    Purpose Concept design practices in engineering are not common across industry or academia. There are a number of well-known tools and methods acknowledged as useful in facilitating concept designing, that is, to assist idea generation, aid evaluation and final selection of one winning concept from many. Combinations of these popular concept design tools and methods provide various systematic methodologies by which practitioners propose to conduct or teach concept designing. In this paper, effective practices and trends are observed through the application of a specific concept design methodology over a range of different projects in electromechanical systems design. Design/methodology/approach The concept design methodology utilised in this study has been developed through the adoption of various tools and methods shown to be beneficial to concept designing, supported by previous positive experiences and successful utilisation associated with electromechanical systems research projects in academia. Each stage of the methodology is discussed and six case studies are presented, which are used to explore effective practices for concept designing. Findings Analysis of the case study data reveals the most popular criteria for the selection of concepts in electromechanical systems design, the number of selection criteria and number of initial concepts ideally required to converge on a final winning concept more efficiently, that is without the need for a more detailed second stage of selection using performance metrics. Originality/value Rarely are detailed studies undertaken in concept design, first, to address the justification for the concept design methodology adopted and, second, to show how effective practices emerge through the analysis of non-subjective data over a number of concept design projects. Although the paper uses only six case studies in electromechanical systems design, it is hoped that the approach presented promotes the possible future development of a framework for verification of concept design methodologies across different products, sectors and user groups. </jats:sec

    STAT5 activation promotes progression and chemotherapy-resistance in early T-cell precursor acute lymphoblastic leukemia

    Full text link
    IL-7 supports the growth and chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL), particularly the early T-cell precursor subtype (ETP-ALL), which frequently has activating mutations of IL-7 signaling. STAT5 is an attractive therapeutic target because it is almost universally activated in ETP-ALL, even in the absence of mutations of upstream activators such as the IL-7R, JAK and FLT3. To examine the role of activated STAT5 in ETP-ALL, we have used a Lmo2-transgenic (Lmo2Tg) mouse model in which we can monitor chemoresistant pre-leukemia (pre-LSCs) and leukemia stem cells (LSCs) that drive T-ALL development and relapse following chemotherapy. Using IL-7R-deficient Lmo2Tg mice, we show that IL-7 signaling was not required for the formation of pre-LSCs but essential for their expansion and clonal evolution into LSCs to generate T-ALL. Activated STAT5B was sufficient for the development of T-ALL in IL-7R; Lmo2Tg mice, indicating that inhibition of STAT5 is required to block the supportive signals provided by IL-7. To further understand the role of activated STAT5 in LSCs of ETP-ALL, we developed a new transgenic mouse that enables T-cell specific and doxycycline-inducible expression of the constitutively activated STAT5B1∗6 mutant. Expression of STAT5B1∗6 in T-cells had no effect alone but promoted expansion and chemoresistance of LSCs in Lmo2Tg mice. Pharmacologic inhibition of STAT5 with Pimozide induced differentiation and loss of LSCs, whilst enhancing response to chemotherapy. Furthermore, Pimozide significantly reduced leukemia burden in vivo and overcame chemoresistance of patient-derived ETP-ALL xenografts. Overall, our results demonstrate that STAT5 is an attractive therapeutic target for eradicating LSCs in ETP-ALL
    • …
    corecore