46 research outputs found
Imaging changes associated with cognitive abnormalities in Parkinson's disease
The current study investigates both gray and white matter changes in non-demented Parkinson's disease (PD) patients with varying degrees of mild cognitive deficits and elucidates the relationships between the structural changes and clinical sequelae of PD. Twenty-six PD patients and 15 healthy controls (HCs) were enrolled in the study. Participants underwent T1-weighted and diffusion tensor imaging (DTI) scans. Their cognition was assessed using a neuropsychological battery. Compared with HCs, PD patients showed significant cortical thinning in sensorimotor (left pre- and postcentral gyri) and cognitive (left dorsolateral superior frontal gyrus [DLSFG]) regions. The DLSFG cortical thinning correlated with executive and global cognitive impairment in PD patients. PD patients showed white matter abnormalities as well, primarily in bilateral frontal and temporal regions, which also correlated with executive and global cognitive impairment. These results seem to suggest that both gray and white matter changes in the frontal regions may constitute an early pathological substrate of cognitive impairment of PD providing a sensitive biomarker for brain changes in PD
A Multi-Modal MRI Analysis of Cortical Structure in Relation to Gender Dysphoria, Sexual Orientation, and Age in Adolescents.
Gender dysphoria (GD) is characterized by distress due to an incongruence between experienced gender and sex assigned at birth. Sex-differentiated brain regions are hypothesized to reflect the experienced gender in GD and may play a role in sexual orientation development. Magnetic resonance brain images were acquired from 16 GD adolescents assigned female at birth (AFAB) not receiving hormone therapy, 17 cisgender girls, and 14 cisgender boys (ages 12-17 years) to examine three morphological and microstructural gray matter features in 76 brain regions: surface area (SA), cortical thickness (CT), and T1 relaxation time. Sexual orientation was represented by degree of androphilia-gynephilia and sexual attraction strength. Multivariate analyses found that cisgender boys had larger SA than cisgender girls and GD AFAB. Shorter T1, reflecting denser, macromolecule-rich tissue, correlated with older age and stronger gynephilia in cisgender boys and GD AFAB, and with stronger attractions in cisgender boys. Thus, cortical morphometry (mainly SA) was related to sex assigned at birth, but not experienced gender. Effects of experienced gender were found as similarities in correlation patterns in GD AFAB and cisgender boys in age and sexual orientation (mainly T1), indicating the need to consider developmental trajectories and sexual orientation in brain studies of GD
nnResting state fMRI scanner instabilities revealed by longitud inal phantom scans in a multi-center study
Quality assurance (QA) is crucial in longitudinal and/or multi-site studies, which involve the collection of data from a group of subjects over time and/or at different locations. It is important to regularly monitor the performance of the scanners over time and at different locations to detect and control for intrinsic differences (e.g., due to manufacturers) and changes in scanner performance (e.g., due to gradual component aging, software and/or hardware upgrades, etc.). As part of the Ontario Neurodegenerative Disease Research Initiative (ONDRI) and the Canadian Biomarker Integration Network in Depression (CAN-BIND), QA phantom scans were conducted approximately monthly for three to four years at 13 sites across Canada with 3T research MRI scanners. QA parameters were calculated for each scan using the functional Biomarker Imaging Research Network\u27s (fBIRN) QA phantom and pipeline to capture between- and within-scanner variability. We also describe a QA protocol to measure the full-width-at-half-maximum (FWHM) of slice-wise point spread functions (PSF), used in conjunction with the fBIRN QA parameters. Variations in image resolution measured by the FWHM are a primary source of variance over time for many sites, as well as between sites and between manufacturers. We also identify an unexpected range of instabilities affecting individual slices in a number of scanners, which may amount to a substantial contribution of unexplained signal variance to their data. Finally, we identify a preliminary preprocessing approach to reduce this variance and/or alleviate the slice anomalies, and in a small human data set show that this change in preprocessing can have a significant impact on seed-based connectivity measurements for some individual subjects. We expect that other fMRI centres will find this approach to identifying and controlling scanner instabilities useful in similar studies
Quantitative examination of a novel clustering method using magnetic resonance diffusion tensor tractography
MR diffusion tensor imaging (DTI) can measure and visualize organization of white matter fibre tracts in vivo. DTI is a relatively new imaging technique, and new tools developed for quantifying fibre tracts require evaluation. The purpose of this study was to compare the reliability of a novel clustering approach with a multiple region of interest (MROI) approach in both healthy and disease (schizophrenia) populations. DTI images were acquired in 20 participants (n=10 patients with schizophrenia: 56 ± 15 years; n=10 controls: 51 ± 20 years) (1.5 Tesla GE system) with diffusion gradients applied in 23 non-collinear directions, repeated three times. Whole brain seeding and creation of fibre tracts were then performed. Interrater reliability of the clustering approach, and the MROI approach, were each evaluated and the methods compared. There was high spatial (voxel-based) agreement within and between the clustering and MROI methods. Fractional anisotropy, trace, and radial and axial diffusivity values showed high intraclass correlation (p<0.001 for all tracts) for each approach. Differences in scalar indices of diffusion between the clustering and MROI approach were minimal. The excellent interrater reliability of the clustering method and high agreement with the MROI method, quantitatively and spatially, indicates that the clustering method can be used with confidence. The clustering method avoids biases of ROI drawing and placement, and, not limited by a priori predictions, may be a more robust and efficient way to identify and measure white matter tracts of interest
Impaired Structural Connectivity of Socio-Emotional Circuits in Autism Spectrum Disorders: A Diffusion Tensor Imaging Study
Abnormal white matter development may disrupt integration within neural circuits, causing particular impairments in higher-order behaviours. In autism spectrum disorders (ASDs), white matter alterations may contribute to characteristic deficits in complex socio-emotional and communication domains. Here, we used diffusion tensor imaging (DTI) and tract based spatial statistics (TBSS) to evaluate white matter microstructure in ASD.DTI scans were acquired for 19 children and adolescents with ASD (∼8-18 years; mean 12.4±3.1) and 16 age and IQ matched controls (∼8-18 years; mean 12.3±3.6) on a 3T MRI system. DTI values for fractional anisotropy, mean diffusivity, radial diffusivity and axial diffusivity, were measured. Age by group interactions for global and voxel-wise white matter indices were examined. Voxel-wise analyses comparing ASD with controls in: (i) the full cohort (ii), children only (≤12 yrs.), and (iii) adolescents only (>12 yrs.) were performed, followed by tract-specific comparisons. Significant age-by-group interactions on global DTI indices were found for all three diffusivity measures, but not for fractional anisotropy. Voxel-wise analyses revealed prominent diffusion measure differences in ASD children but not adolescents, when compared to healthy controls. Widespread increases in mean and radial diffusivity in ASD children were prominent in frontal white matter voxels. Follow-up tract-specific analyses highlighted disruption to pathways integrating frontal, temporal, and occipital structures involved in socio-emotional processing.Our findings highlight disruption of neural circuitry in ASD, particularly in those white matter tracts that integrate the complex socio-emotional processing that is impaired in this disorder
Children recruit distinct neural systems for implicit emotional face processing.
The ability to properly distinguish facial emotions has a protracted development, not maturing until well into adolescence. Emotional faces activate emotion-specific neural networks in adults; whether these networks are operational in children is not known. Using an implicit face-processing task in 10-year-old children, we determined that the emotions of fear, disgust and sadness recruited distinct neural systems. These systems included a number of regions typically associated with processing emotions in adults, namely the amygdala and parahippocampal gyrus, insula and cingulate gyrus, as well as the fusiform and superior temporal gyri. Thus, in spite of immature behavioral responses to emotional faces in explicit tasks, neural networks for emotion-specific processing are present in young children
Accelerated and amplified neural responses in visual discrimination: Two features are processed faster than one
International audienc
High-resolution In Vivo manual segmentation protocol for human hippocampal subfields using 3T magnetic resonance imaging
The human hippocampus has been broadly studied in the context of memory and normal brain function and its role in different neuropsychiatric disorders has been heavily studied. While many imaging studies treat the hippocampus as a single unitary neuroanatomical structure, it is, in fact, composed of several subfields that have a complex three-dimensional geometry. As such, it is known that these subfields perform specialized functions and are differentially affected through the course of different disease states. Magnetic resonance (MR) imaging can be used as a powerful tool to interrogate the morphology of the hippocampus and its subfields. Many groups use advanced imaging software and hardware (\u3e3T) to image the subfields; however this type of technology may not be readily available in most research and clinical imaging centers. To address this need, this manuscript provides a detailed step-by-step protocol for segmenting the full anterior-posterior length of the hippocampus and its subfields: cornu ammonis (CA) 1, CA2/CA3, CA4/dentate gyrus (DG), strata radiatum/lacunosum/moleculare (SR/SL/SM), and subiculum. This protocol has been applied to five subjects (3F, 2M; age 29-57, avg. 37). Protocol reliability is assessed by resegmenting either the right or left hippocampus of each subject and computing the overlap using the Dice\u27s kappa metric. Mean Dice\u27s kappa (range) across the five subjects are: whole hippocampus, 0.91 (0.90-0.92); CA1, 0.78 (0.77-0.79); CA2/CA3, 0.64 (0.56-0.73); CA4/dentate gyrus, 0.83 (0.81-0.85); strata radiatum/lacunosum/moleculare, 0.71 (0.68-0.73); and subiculum 0.75 (0.72-0.78). The segmentation protocol presented here provides other laboratories with a reliable method to study the hippocampus and hippocampal subfields in vivo using commonly available MR tools
Diurnal oscillations of MRI metrics in human brains
Restricted access dataset used for the study "Diurnal oscillations of MRI metrics in human brains".
Contains subject-level data within the following files:
whole_brain_data.csv - average of each MRI metric across the relevant atlas for each time point.
processed_ROI_data.csv - average of each MRI metric within each atlas ROI for each time point.
whole_brain_techvar_data.csv - average of each MRI metric across the relevant atlas for each time point and back-to-back replicate.
weights_kg.csv - body weight at each time point.
actigraphy_3day.csv - steps registered by the FitBit device each minute for the 3 days of observation.
actigraphy_sleep.csv - sleep intervals registered by the FitBit device during the 3 days of observation