3,697 research outputs found

    Theory of condensation of indirect excitons in a trap

    Get PDF
    We present theoretical studies of condensation of indirect excitons in a trap. Our model quantifies the effect of screening of the trap potential by indirect excitons on exciton condensation. The theoretical studies are applied to a system of indirect excitons in a GaAs/AlGaAs coupled quantum well structure in a diamond-shaped electrostatic trap where exciton condensation was studied in earlier experiments. The estimated condensation temperature of the indirect excitons in the trap reaches hundreds of milliKelvin

    On the possibility of refining by means of optical location some astronomical parameters of the system - Earth-Moon

    Get PDF
    Optical location of moon in Earth-Moon system using artificial light reflector, on lunar surfac

    Reduced reliance on the trace element selenium during evolution of mammals

    Get PDF
    Evolution from fish to mammals was accompanied by decreased use of selenocysteine, raising questions about the need for selenium dietary supplements when pathology is not imminent

    Neutrino spin rotation in dense matter and electromagnetic field

    Full text link
    Exact solutions of the Dirac--Pauli equation for massive neutrino with anomalous magnetic moment interacting with dense matter and strong electromagnetic field are found. The complete system of neutrino wavefunctions, which show spin rotation properties are obtained and their possible applications are discussed.Comment: 11 pages, latex, misprints are correcte

    UGA codon position-dependent incorporation of selenocysteine into mammalian selenoproteins

    Get PDF
    It is thought that the SelenoCysteine Insertion Sequence (SECIS) element and UGA codon are sufficient for selenocysteine (Sec) insertion. However, we found that UGA supported Sec insertion only at its natural position or in its close proximity in mammalian thioredoxin reductase 1 (TR1). In contrast, Sec could be inserted at any tested position in mammalian TR3. Replacement of the 3′-UTR of TR3 with the corresponding segment of a Euplotes crassus TR restricted Sec insertion into the C-terminal region, whereas the 3′-UTR of TR3 conferred unrestricted Sec insertion into E. crassus TR, in which Sec insertion is normally limited to the C-terminal region. Exchanges of 3′-UTRs between mammalian TR1 and E. crassus TR had no effect, as both proteins restricted Sec insertion. We further found that these effects could be explained by the use of selenoprotein-specific SECIS elements. Examination of Sec insertion into other selenoproteins was consistent with this model. The data indicate that mammals evolved the ability to limit Sec insertion into natural positions within selenoproteins, but do so in a selenoprotein-specific manner, and that this process is controlled by the SECIS element in the 3′-UTR

    The Effect of Copper and Manganese on the Amorphization Process in a Thin Fe–Si–Mg–O Film

    Get PDF
    The effect of copper and manganese on the amorphization process in the surface layer of a technical Fe-3% Si alloy during annealing in the α → γ transition temperature range was determined by x-ray phase analysis. The presence of 0.5 wt. % Cu and 0.3 wt. % Mn in the initial Fe-3% Si solid solution significantly enhances the amorphization process that occurs when heated in the temperature range 920… 960∘C as an alternative to the α → γ phase transformation. The effect of amplification of amorphization is both in obtaining a larger amount of material in the amorphous state, and in the appearance of two amorphous phases, differing in average interatomic distance. The composition of the amorphous phase is approximately described as Fe89Si6Mg4Mn0.5Cu0.5 in the presence of Cu and Mn atoms and Fe90Si6Mg4 in the case of their absence in the amorphous layer.     Keywords: amorphization, non-ambient x-ray diffraction, Fe-3%Si, phase transition, thermal stability

    Solid state amorphization in a thin Fe-Si-Mg-O surface film triggered by the reduction of elements from oxides in the temperature range of the α-γ transformation

    Get PDF
    The study of the processes occurring in the surface layer of the MgO coated commercial alloy Fe-3%Si-0.5%Cu (grain oriented electrical steel) demonstrated that the amorphous phase in the form of a Fe-based solid solution is formed during continuous heating in the 95%N2 + 5%H2 atmosphere. For the purposes of this study, the following methods were used: non-ambient XRD at 20 –1060°C with heating and cooling at a rate of 0.5 dps, layer-by-layer chemical analysis performed by a glow discharge analyzer, scanning electron microscopy and energy dispersive X-ray spectroscopy. ThermoCalc software was used to calculate the potential phase equilibrium states. The amorphous phase was formed in the α → γ transformation temperature range, when the heating rates were altered in the surface layer of 1 µm initially consisted of a solid α-Fe-based solution with ~1– 2 wt.% Si with (MgFe)2 SiO4, (MgFe)O, SiO2 oxide inclusions. We suppose that (MgFe)2 SiO4 oxides are partly reduced by H2 to Mg2 Si molecular complexes, which become solid solutions in the temperature range of the metastability of the α-Fe crystal lattice with subsequent amorphization as an alternative to the α → γ transition. The amorphous state is obtained at 920 – 960°C and is retained both at subsequent heating (to 1060°C) and cooling (to 20°С), which is super-stable compared to the established metallic glasses. The composition of the amorphous phase can be described by the formula Fe89.5 Si6 Mg4 Cu0.5. © 2020, Institute for Metals Superplasticity Problems of Russian Academy of Sciences. All rights reserved.Russian Foundation for Basic Research, RFBR: 20‑08‑00332Ministry of Education and Science of the Russian Federation, Minobrnauka: 11.1465.2014/K.Acknowledgements. This study was conducted using equipment provided by the Laboratory of Structural Analysis Techniques and Materials and Nanomaterials Properties of CKP Ural Federal University. The study was financially supported by Government Decree No. 211 of the Russian Federation, Contract No. 02. A03.21.0006 and within the framework of the state task issued by the Ministry of Education and Science of the Russian Federation, project No. 11.1465.2014/K. The reported study was funded by RFBR, project number 20‑08‑00332

    SUBNANOSECOND ELECTRON BEAMS FOCUSING USING HELMHOLTZ COILS FOR PULSE CATHODOLUMINESCENCE

    Full text link
    In this work experiments on focusing of subnanosecond runaway electron bunches using Helmholtz coils are presented. The bunches are formed in a diode filled with air at atmospheric pressure. Helmholtz coils provide opportunity to focus formed beams in free space between the coils which is important

    VSOP observation of the quasar PKS 2215+020: a new laboratory for core-jet physics at z=3.572

    Get PDF
    We report results of a VSOP (VLBI Space Observatory Programme) observation of a high redshift quasar PKS 2215+020 (z=3.572). The ~1 milliarcsecond resolution image of the quasar reveals a prominent `core-jet' structure on linear scales from 5/h to 300/h pc ($H_0=100*h km/(s*Mpc). The brightness temperatures and sizes of bright features identified in the jet are consistent with emission from relativistic shocks dominated by adiabatic energy losses. The jet is powered by the central black hole with estimated mass of ~4*10^9 solar masses. Comparisons with VLA and ROSAT observations indicate a possible presence of an extended radio/X-ray halo surrounding 2215+020.Comment: 15 pages, 6 figures, aastex macros; accepted for publication in The Astrophysical Journal, V.546, N.2 *(January 10 2001
    corecore