4 research outputs found

    A Discretize-Then-Optimize Approach to PDE-Constrained Shape Optimization

    Full text link
    We consider discretized two-dimensional PDE-constrained shape optimization problems, in which shapes are represented by triangular meshes. Given the connectivity, the space of admissible vertex positions was recently identified to be a smooth manifold, termed the manifold of planar triangular meshes. The latter can be endowed with a complete Riemannian metric, which allows large mesh deformations without jeopardizing mesh quality; see arXiv:2012.05624. Nonetheless, the discrete shape optimization problem of finding optimal vertex positions does not, in general, possess a globally optimal solution. To overcome this ill-possedness, we propose to add a mesh quality penalization term to the objective function. This allows us to simultaneously render the shape optimization problem solvable, and keep track of the mesh quality. We prove the existence of a globally optimal solution for the penalized problem and establish first-order necessary optimality conditions independently of the chosen Riemannian metric. Because of the independence of the existence results of the choice of the Riemannian metric, we can numerically study the impact of different Riemannian metrics on the steepest descent method. We compare the Euclidean, elasticity, and a novel complete metric, combined with Euclidean and geodesic retractions to perform the mesh deformation

    A general formulation of reweighted least squares fitting

    Full text link
    We present a generalized formulation for reweighted least squares approximations. The goal of this article is twofold: firstly, to prove that the solution of such problem can be expressed as a convex combination of certain interpolants when the solution is sought in any finite-dimensional vector space; secondly, to provide a general strategy to iteratively update the weights according to the approximation error and apply it to the spline fitting problem. In the experiments, we provide numerical examples for the case of polynomials and splines spaces. Subsequently, we evaluate the performance of our fitting scheme for spline curve and surface approximation, including adaptive spline constructions
    corecore