26 research outputs found
Blood Pressure Lowering With Nilvadipine in Patients With Mild-to-Moderate Alzheimer Disease Does Not Increase the Prevalence of Orthostatic Hypotension
BACKGROUND: Hypertension is common among patients with Alzheimer disease. Because this group has been excluded from hypertension trials, evidence regarding safety of treatment is lacking. This secondary analysis of a randomized controlled trial assessed whether antihypertensive treatment increases the prevalence of orthostatic hypotension (OH) in patients with Alzheimer disease. METHODS AND RESULTS: Four hundred seventy‐seven patients with mild‐to‐moderate Alzheimer disease were randomized to the calcium‐channel blocker nilvadipine 8 mg/day or placebo for 78 weeks. Presence of OH (blood pressure drop ≥20/≥10 mm Hg after 1 minute of standing) and OH‐related adverse events (dizziness, syncope, falls, and fractures) was determined at 7 follow‐up visits. Mean age of the study population was 72.2±8.2 years and mean Mini‐Mental State Examination score was 20.4±3.8. Baseline blood pressure was 137.8±14.0/77.0±8.6 mm Hg. Grade I hypertension was present in 53.4% (n=255). After 13 weeks, blood pressure had fallen by −7.8/−3.9 mm Hg for nilvadipine and by −0.4/−0.8 mm Hg for placebo (P<0.001). Across the 78‐week intervention period, there was no difference between groups in the proportion of patients with OH at a study visit (odds ratio [95% CI]=1.1 [0.8–1.5], P=0.62), nor in the proportion of visits where a patient met criteria for OH, corrected for number of visits (7.7±13.8% versus 7.3±11.6%). OH‐related adverse events were not more often reported in the intervention group compared with placebo. Results were similar for those with baseline hypertension. CONCLUSIONS: This study suggests that initiation of a low dose of antihypertensive treatment does not significantly increase the risk of OH in patients with mild‐to‐moderate Alzheimer disease. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02017340
Concrete materials and structures research at the University of Bath
Some of the research into concrete materials and design of concrete structures being carried out at the University of Bath, are discussed. One of the researches at Bath is investigating the use of calcium sulfoaluminate cements (CSAC) in combination with additions to produce performance similar to that of UK composite cements but with lower embodied CO2, through optimization of physical and chemical processes. One of the researches investigates whether supersulfated cements (SSC) meeting BS EN 15743 can be achieved using UK-sourced materials and investigating the resulting performance of the concretes produced. A further area of research, being carried out in close collaboration with the BRE, is investigating the use of alkali-activated concretes, the binder component of which constitutes a blend of fly ash and GGBS activated by an alkali-silicate solution. These ongoing research into concrete materials and structures are delivering innovative, practicable and sustainable solutions to the issues facing the cement and concrete sectors
Calcium precursors for the production of CaO sorbents for multicycle CO2 capture
A screening of potential calcium precursors for the production of CaO sorbents for CO capture at high temperature was conducted in this work.The precursors studied include microsized calcium carbonate (CC-CaO), calcium hydroxide (CH-CaO), nanosized
A complete set of human telomeric probes and their clinical application
Human chromosomes terminate with specialized telomeric structures including the simple tandem repeat (TTAGGG)n and additional complex subtelomeric repeats. Unique sequence DNA for each telomere is located 100-300 kilobases (kb) from the end of most chromosomes. A high concentration of genes and a number of candidate genes for recognizable syndromes are known to be present in telomeric regions. The human telomeric regions represent a major diagnostic challenge in clinical cytogenetics, because most of the terminal bands are G negative, and cryptic deletions and translocations in the telomeric regions are therefore difficult to detect by conventional cytogenetic methods. In fact, several submicroscopic chromosomal abnormalities in patients with undiagnosed mental retardation or multiple congenital anomalies have been identified by other molecular methods such as DNA polymorphism analysis. To improve the sensitivity for deletion detection and to determine whether such cryptic rearrangements represent a significant source of human pathology that has not been previously appreciated, it would be valuable to have specific FISH probes for all human telomeres. We report here the isolation and characterization of a complete set of specific FISH probes representing each human telomere. As most of these clones are at a known distance of within 100-300 kb from the end of the chromosome arm, this provides a 10-fold improvement in deletion detection sensitivity compared with high-resolution cytogenetics (2-3 Mb resolution). While testing these probes, we serendipitously identified a family with multiple members carrying a cryptic 1q;11p rearrangement in the balanced or unbalanced state