559 research outputs found

    The correlation function of radio sources

    Get PDF
    We investigate the large-scale clustering of radio sources in the Green Bank and Parkes-MIT-NRAO 4.85 GHz surveys by measuring the angular two-point correlation function w(\theta). Excluding contaminated areas, the two surveys together cover 70 per cent of the whole sky. We find both surveys to be reasonably complete above 50 mJy. On the basis of previous studies, the radio sources are galaxies and radio-loud quasars lying at redshifts up to z \sim 4, with a median redshift z \sim 1. This provides the opportunity to probe large-scale structures in a volume far larger than that within the reach of present optical and infrared surveys. We detect a clustering signal w(\theta) \approx 0.01 for \theta = 1\degr. By assuming an evolving power-law spatial correlation function in comoving coordinates \xi(r_c,z) = ( r_c / r_0 )^{-\gamma} (1+z)^{\gamma-(3+\epsilon)}, where \gamma = 1.8, and the redshift distribution N(z) of the radio galaxies, we constrain the r_0--\epsilon parameter space. For `stable clustering' (\epsilon = 0), we find the correlation length r_0 \approx 18 Mpc/h, larger than the value for nearby normal galaxies and comparable to the cluster-cluster correlation length.Comment: 8 pages, 7 ps figures included, LaTeX (mn,sty). Accepted by MNRA

    Contributions of point extragalactic sources to the Cosmic Microwave Background bispectrum

    Full text link
    All the analyses of Cosmic Microwave Background (CMB) temperature maps up--to--date show that CMB anisotropies follow a Gaussian distribution. On the other hand, astrophysical foregrounds which hamper the detection of the CMB angular power spectrum, are not Gaussian distributed on the sky. Therefore, they should give a sizeable contribution to the CMB bispectrum. In fact, the first year data of the Wilkinson Microwave Anisotropy Probe (WMAP) mission have allowed the {\it first} detection of the extragalactic source contribution to the CMB bispectrum at 41 GHz and, at the same time, much tighter limits than before to non--Gaussian primordial fluctuations. In view of the above and for achieving higher precision in current and future CMB measurements of non--Gaussianity, in this paper we discuss a comprehensive assessment of the bispectrum due to either uncorrelated and clustered extragalactic point sources in the whole frequency interval around the CMB intensity peak. Our calculations, based on current cosmological evolution models for sources, show that the reduced angular bispectrum due to point sources, bpsb_{ps}, should be detectable in all WMAP and Planck frequency channels. We also find agreement with the results on bpsb_{ps} at 41 GHz coming from the analysis of the first year WMAP data. Moreover, by comparing bpsb_{ps} with the primordial reduced CMB bispectrum, we find that only the peak value of the primordial bispectrum (which appears at l≃200l\simeq 200) results greater than bpsb_{ps} in a frequency window around the intensity peak of the CMB. The amplitude of this window basically depends on the capability of the source detection algorithms (i.e., on the achievable flux detection limit, SlimS_{lim}, for sources).Comment: 26 pages, 6 Figures, use AasTex5.0, ApJ, in press, Oct. 10, 2003 Issu

    ASCA observations of the nearby galaxies Dwingeloo 1 and Maffei 1

    Get PDF
    We present ASCA observations of the nearby galaxies Dwingeloo 1 (Dw1) and Maffei 1 (Mf1). X-ray sources are clearly detected within 3 arcminutes of the optical nuclei of both galaxies. Despite the low Galactic latitude of these fields (|b|<1\degmark) we conclude, on probability and spectral grounds, that the detected sources are intrinsic to these galaxies rather than foreground or background interlopers. The Dw1 source, designated Dw1-X1, is interpreted as being either a hyper-luminous X-ray binary (with a 0.5--10\,keV luminosity of more than 10^{39}\ergps) or an X-ray bright supernova. The Mf1 emission is hard and extended, suggesting that it originates from a population of X-ray binaries. Prompted by the Dw1-X1 results, we discuss the nature of hyper-luminous X-ray binary systems. Such sources are commonly seen in nearby galaxies with a frequency of approximately one per galaxy. We present a possible connection between these luminous systems and Galactic superluminal sources.Comment: 9 pages (4 ps figures included). Accepted for publication in MNRAS. Higher quality reproductions of Figure 1 available upon reques

    Revisiting glueball wave functions at zero and finite temperature

    Full text link
    We study the sizes and thermal properties of glueballs in a three dimensional compact Abelian gauge model on improved lattice. We predict the radii of ∌0.60\sim 0.60 and ∌1.12\sim 1.12 in the units of string tension, or ∌0.28\sim 0.28 and ∌0.52\sim 0.52 fm, for the scalar and tensor glueballs, respectively. We perform a well controlled extrapolation of the radii to the continuum limit and observe that our results agree with the predicted values. Using Monte Carlo simulations, we extract the pole-mass of the lowest scalar and tensor glueballs from the temporal correlators at finite temperature. We see a clear evidence of the deconfined phase, and the transition appears to be similar to that of the two-dimensional XY model as expected from universality arguments. Our results show no significant changes in the glueball wave functions and masses in the deconfined phase.Comment: 8 pages, 10 figure

    Superficial Palmar Arch Aneurysm after Carpal Tunnel Decompression, a Rare Complication: A Case Report

    Get PDF
    False aneurysms of the palmar arteries are rare. They are usually associated with traumatic injuries to the hand vasculature. We present a case of superficial palmar arch aneurysm (SPAA), complicating carpal tunnel decompression which presented as a pulsatile mass at the site of previous surgery. Initial diagnosis was made on clinical examination and confirmed on doppler ultrasound (US) and computed tomographic angiography (CTA). The feeding vessel of the aneurysm was subsequently occluded using coil embolization

    Separable approximation to two-body matrix elements

    Full text link
    Two-body matrix elements of arbitrary local interactions are written as the sum of separable terms in a way that is well suited for the exchange and pairing channels present in mean-field calculations. The expansion relies on the transformation to center of mass and relative coordinate (in the spirit of Talmi's method) and therefore it is only useful (finite number of expansion terms) for harmonic oscillator single particle states. The converge of the expansion with the number of terms retained is studied for a Gaussian two body interaction. The limit of a contact (delta) force is also considered. Ways to handle the general case are also discussed.Comment: 10 pages, 5 figures (for high resolution versions of some of the figures contact the author

    Synchrotron Emission from Hot Accretion Flows and the Cosmic Microwave Background Anisotropy

    Get PDF
    Current estimates of number counts of radio sources in the frequency range where the most sensitive Cosmic Microwave Background (CMB) experiments are carried out significantly under-represent sources with strongly inverted spectra. Hot accretion flows around supermassive black holes in the nuclei of nearby galaxies are expected to produce inverted radio spectra by thermal synchrotron emission. We calculate the temperature fluctuations and power spectra of these sources in the Planck Surveyor 30 GHz energy channel, where their emission is expected to peak. We find that their potential contribution is generally comparable to the instrumental noise, and approaches the CMB anisotropy level at small angular scales. Forthcoming CMB missions, which will provide a large statistical sample of inverted-spectra sources, will be crucial for determining the distribution of hot accretion flows in nearby quiescent galactic nuclei. Detection of these sources in different frequency channels will help constrain their spectral characteristics, hence their physical properties.Comment: 10 pages, 4 figures, accepted for publication in Ap

    Those wonderful elastic waves

    Full text link
    We consider in a simple and general way elastic waves in isotropic and anisotropic media, their polarization, speeds, reflection from interfaces with mode conversion, and surface waves. Reflection of quasi transverse waves in anisotropic media from a free surface is shown to be characterized by three critical angles.Comment: 11 Figures 26 page

    An Infrared Determination of the Reddening and Distance to Dwingeloo 1

    Get PDF
    We present for the first time infrared observations of the nearby highly obscured galaxy Dwingeloo 1 (Dw1), including deep H-band imaging covering a total of 4.9x4.9 arcmin, together with J and Ks imaging of the central 2.5x2.5 arcmin. We used the small dispersion of the intrinsic infrared colors of spiral galaxies to determine an infrared H-band extinction of A_H = 0.47+/-0.11 mag towards Dw1. In using infrared colors, the uncertainties in the reddening and distance are reduced by a factor of three. The H-band magnitude corrected for extinction and the infrared Tully-Fisher relation are then used to estimate a distance modulus of (m-M)_0 = 28.62+/-0.27, and thus a distance of d = 5.3 {+0.7/-0.6} Mpc, which puts Dw1 at the far end of the IC342/Maffei 1 & 2 group. Our result is largely independent of the nature of the reddening law because we estimated both the reddening and the distance at the same wavelength range.Comment: 20 pages, 2 figures, see http://nicmos2.as.arizona.edu/~aalonso/Dw1/dw1_paper.htm
    • 

    corecore