11 research outputs found
The instrument suite of the European Spallation Source
An overview is provided of the 15 neutron beam instruments making up the initial instrument suite of the
European Spallation Source (ESS), and being made available to the neutron user community. The ESS neutron
source consists of a high-power accelerator and target station, providing a unique long-pulse time structure
of slow neutrons. The design considerations behind the time structure, moderator geometry and instrument
layout are presented.
The 15-instrument suite consists of two small-angle instruments, two reflectometers, an imaging beamline,
two single-crystal diffractometers; one for macromolecular crystallography and one for magnetism, two powder
diffractometers, and an engineering diffractometer, as well as an array of five inelastic instruments comprising
two chopper spectrometers, an inverse-geometry single-crystal excitations spectrometer, an instrument for vibrational
spectroscopy and a high-resolution backscattering spectrometer. The conceptual design, performance
and scientific drivers of each of these instruments are described.
All of the instruments are designed to provide breakthrough new scientific capability, not currently
available at existing facilities, building on the inherent strengths of the ESS long-pulse neutron source of high
flux, flexible resolution and large bandwidth. Each of them is predicted to provide world-leading performance
at an accelerator power of 2 MW. This technical capability translates into a very broad range of scientific
capabilities. The composition of the instrument suite has been chosen to maximise the breadth and depth
of the scientific impact o
Recommended from our members
High-velocity Stars in SDSS/APOGEE DR17
We report 23 stars having Galactocentric velocities larger than 450 km s-1 in the final data release of the APOGEE survey. This sample was generated using space velocities derived by complementing the high-quality radial velocities from the APOGEE project in Sloan Digital Sky Survey's Data Release 17 (DR17) with distances and proper motions from Gaia early Data Release 3 (eDR3). We analyze the observed kinematics and derived dynamics of these stars, considering different potential models for the Galaxy. We find that three stars could be unbound depending on the adopted potential, but in general all of the stars show typical kinematics of halo stars. The APOGEE DR17 spectroscopic results and Gaia eDR3 photometry are used to assess the stellar parameters and chemical properties of the stars. All of the stars belong to the red giant branch, and, in general, they follow the abundance pattern of typical halo stars. There are a few exceptions that would deserve further analysis through high-resolution spectroscopy. In particular, we identify a high-velocity Carbon-Enhanced Metal-Poor star, with a Galactocentric velocity of 482 km s-1. We do not confirm any hypervelocity star in the sample, but this result is very sensitive to the adopted distances and less sensitive to the Galactic potential. © 2022. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Association of clinical factors and recent anticancer therapy with COVID-19 severity among patients with cancer: a report from the COVID-19 and Cancer Consortium.
Patients with cancer may be at high risk of adverse outcomes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We analyzed a cohort of patients with cancer and coronavirus 2019 (COVID-19) reported to the COVID-19 and Cancer Consortium (CCC19) to identify prognostic clinical factors, including laboratory measurements and anticancer therapies.
Patients with active or historical cancer and a laboratory-confirmed SARS-CoV-2 diagnosis recorded between 17 March and 18 November 2020 were included. The primary outcome was COVID-19 severity measured on an ordinal scale (uncomplicated, hospitalized, admitted to intensive care unit, mechanically ventilated, died within 30 days). Multivariable regression models included demographics, cancer status, anticancer therapy and timing, COVID-19-directed therapies, and laboratory measurements (among hospitalized patients).
A total of 4966 patients were included (median age 66 years, 51% female, 50% non-Hispanic white); 2872 (58%) were hospitalized and 695 (14%) died; 61% had cancer that was present, diagnosed, or treated within the year prior to COVID-19 diagnosis. Older age, male sex, obesity, cardiovascular and pulmonary comorbidities, renal disease, diabetes mellitus, non-Hispanic black race, Hispanic ethnicity, worse Eastern Cooperative Oncology Group performance status, recent cytotoxic chemotherapy, and hematologic malignancy were associated with higher COVID-19 severity. Among hospitalized patients, low or high absolute lymphocyte count; high absolute neutrophil count; low platelet count; abnormal creatinine; troponin; lactate dehydrogenase; and C-reactive protein were associated with higher COVID-19 severity. Patients diagnosed early in the COVID-19 pandemic (January-April 2020) had worse outcomes than those diagnosed later. Specific anticancer therapies (e.g. R-CHOP, platinum combined with etoposide, and DNA methyltransferase inhibitors) were associated with high 30-day all-cause mortality.
Clinical factors (e.g. older age, hematological malignancy, recent chemotherapy) and laboratory measurements were associated with poor outcomes among patients with cancer and COVID-19. Although further studies are needed, caution may be required in utilizing particular anticancer therapies.
NCT04354701
UCANS-8 in Paris Eighth International Meeting of the Union for Compact Accelerator-Driven Neutron Sources
International audienc
Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight
From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions. © Copyright